
Ravenscar Java: A high-integrity
profile for real-time Java

Jagun Kwon, Andy Wellings and Steve King
University of York, UK.

For many, Java is the antithesis of a high-integrity
programming language. Its combination of object-oriented

programming features, its automatic garbage collection and its
poor support for real-time multi-threading, are all seen as

particular impediments.

Topics

■ Problems for Java and high integrity systems (HIS)
■ The role of the RTSJ
■ Learning from the Ada experience
■ A framework for high-integrity RTSJ-based systems
■ Ravenscar-Java

Java and HIS

■ There is difficulty in applying static analysis techniques
due to the inherent dynamic nature of Java:
– run-time dispatching
– dynamic class loading

■ Problems compounded if the analysis has to be done at
the byte code level as opposed to language level

■ Problems with the Java Memory Model making it
difficult to define the semantics of multi-threaded
programs (being addressed by JSR - 133)

■ Lack of assertions (being addressed by JSR 41)
■ Particular minor problems

– Return values quietly discarded; side effect in expressions
– No support for subtypes and enumeration types (have to role

your own)

Java and Real-Time

■ We all know the problems here:
– poor support for real-time threads and real-time scheduling,
– lack of confidence in real-time garbage collection,
– non responsiveness of thread asynchronous interaction

mechanisms,
– inability to interact with interrupts and devices
– complex virtual machine
– and so on

■ Because of this we have
– RTSJ
– J2ME

Problems with RTSJ

■ Aimed at the more dynamic soft real-time market rather
than the HIS market

■ Semantics not yet well defined
■ Adds to the complexity of the VM
■ Adds to the complexity of the programming model

■ Result is that static analysis of RTSJ programs is even
more problematic

Learning from Ada

■ Although Ada does have many faults, it does have a
good technical solution for both real-time and high-
integrity systems

■ The SPARK Ada subset is very conservative, in
particular
– no tasking
– no OOP

■ In recent years, the Ravenscar Ada Tasking profile has
become a de facto standard for HIS
– programs can be analysed for their schedulabilty
– the run-time support is simple and can be engineered to a high-

level of integrity (e.g. Aonix’s Raven)
– will soon become part of the ISO standard

Ravenscar Java

■ Goal
– Produce a high integrity subset (profile) of Java and the RTSJ
– Fit within the J2ME framework
– Provide a high integrity Ravenscar VM (RVM)

■ Approach
– Apply the U.S. NRC guidelines on the use of languages in HIS

(currently, it does not consider Java)
– Expand the guidelines to be more positive about concurrency
– Use the Ravenscar computational model to guide the definition

of the RTSJ profile
– Where necessary extend the language via annotations to allow:

WCET and other static analysis techniques

Offline Target Independent Architecture

Traditional Java
Compiler

Analysis Tools

RTSJ Program
+

Annotations

Extensible
Annotation

Class
(*.xac file)

Java Byte
Code

(*.class file)

Analysis Tools: E.g.

• Check profile conformance

• Perform high-level WCETA

• Escape analysis

• Model checking

Results of analysis stored in
xac file. In particular, JBC
frequency vectors

Offline Target-Dependent Analysis

■ Takes a main class and a Java Path and constructs the
tree of objects created by the program

■ Takes the timing characteristics of the target RVM
■ Performs low-level WCET on the real-time threads
■ Performs schedulability analysis

■ In a semi static environment, this could be done by the
RVM after loading the main class

Online Architecture

Safe Operating System

e.g. OSE

Ravenscar VM

JBC
+

XAC

Standalone

Ravenscar VM

JBC
+

XAC

Hardware

Ravenscar VM

JBC
+

XAC

Computational Model

■ Fixed priority pre-emptive scheduling
■ Priority ceiling inheritance
■ Periodic no-heap real-time threads
■ Sporadic no-heap event handlers
■ Two phases of program execution

Program Execution

Initialisation Phase

main invoked

Create initialiser
thread

main terminates

Load and initialise
all objects and

real-time threads

Start all threads

Mission Phase

New Thread

New Thread

New Thread

Allocatable Memory

Immortal Memory Scoped Memory

creates uses

The Profile

■ Predictability of memory utilization
■ Predictability of timing
■ Predictability of control and data flow (not covered here)

■ The profile changes some of the access modifiers of the
classes, constructors, and methods in order to ensure they
cannot be used directly by the programmer. The changes are
always more restrictive and, hence programs, will always
execute on non-Ravenscar implementations.

The Initializer Thread

package ravenscar;
import javax.realtime.*;

public class Initializer extends RealtimeThread
{
public Initializer()
{
super(new PriorityParameters(

PriorityScheduler.MAX_PRIORITY), null, null,
ImmortalMemory.instance(),
null, null);

}
}

Typical Application
import ravenscar.*;

public class MyApplication extends Initializer
{
public void run()
{
// Create memory areas (LTMemory areas)
// Create no heap real-time threads
// All objects required by application must be
// created here or in the constructors of objects
// created.
// Start all threads.

}

public static void main (String [] args)
{
MyApplication myApp = new MyApplication();
myApp.start();

}
}

Memory Area Restrictions

■ No nested calls to enter LTMemory areas
■ No LTMemory areas shared between threads (all

communications via Immortal memory)

■ Goal: to significantly reduce the complexity of the VM in
this area and (with escape analysis) to eliminate the
run-time checks

■ Implication: memory management is done at the thread
level rather than the object level

MemoryArea Class
package ravenscar;
public abstract class MemoryArea
{
protected MemoryArea(long sizeInBytes);
protected MemoryArea(javax.realtime.SizeEstimator size);

public void enter(java.lang.Runnable logic);
public void executeInArea(java.lang.Runnable logic)

throws InaccessibleAreaException;

public static MemoryArea getMemoryArea(java.lang.Object object)

public long memoryConsumed();
public long memoryRemaining();
public java.lang.Object newArray(...)

throws IllegalAccessException, InstantiationException;

public java.lang.Object newInstance(java.lang.Class type)
throws IllegalAccessException, InstantiationException;

public java.lang.Object newInstance(...)
throws IllegalAccessException, InstantiationException;

public long size();
}

Subclasses

public final class ImmortalMemory extends MemoryArea
{
public static ImmortalMemory instance();

}

public abstract class ScopedMemory extends MemoryArea
{
public ScopedMemory(long size);
public ScopedMemory(SizeEstimator size);

public void enter();
public int getReferenceCount();

}

public class LTMemory extends ScopedMemory
{
public LTMemory(long size);
public LTMemory(SizeEstimator size);

}

Predictability of Timing

■ Computation model support only periodic threads and
sporadic event handlers

■ No on-line scheduling analysis
■ No overrun or deadline miss handlers

Scheduling

package ravenscar;

public interface Schedulable extends java.lang.Runnable
{
}

public abstract class Scheduler
{
}

public class PriorityScheduler extends Scheduler
{
public static final int MAX_PRIORITY;
public static final int MIN_PRIORITY;

}

Release Parameters
package ravenscar;

public class ReleaseParameters

{
protected ReleaseParameters();

}

public class PeriodicParameters extends ReleaseParameters
{
public PeriodicParameters(AbsoluteTime startTime,

RelativeTime period);
protected AbsoluteTime getStartTime();
protected RelativeTime getPeriod();

}

public class SporadicParameters extends ReleaseParameters
{
public SporadicParameters(RelativeTime minInterarrival);
protected RelativeTime getMinInterarrival();

}

Threads

package java.lang;
public class Thread implements Runnable
{
Thread();
Thread(String name);

void start();
}

Real-time Threads

package ravenscar;
public class RealtimeThread extends java.lang.Thread

implements Schedulable
{
RealtimeThread(PriorityParameters pp,

PeriodicParameters p);
RealtimeThread(PriorityParameters pp,

PeriodicParameters p, MemoryArea ma);

public static RealtimeThread currentRealtimeThread();
public MemoryArea getCurrentMemoryArea();
void start();
static boolean waitForNextPeriod();

}

No Heap Real-time Threads

public class NoHeapRealtimeThread extends RealtimeThread
{

NoHeapRealtimeThread(PriorityParameters pp,
MemoryArea ma);

NoHeapRealtimeThread(PriorityParameters pp,
PeriodicParameters p, MemoryArea ma);

void start();
}

Periodic Threads

package ravenscar;
public class PeriodicThread extends NoHeapRealtimeThread
{
public PeriodicThread(PriorityParameters pp,

PeriodicParameters p, java.lang.Runnable logic);

public void run();
public void start();

}

Example Implementation
public class PeriodicThread extends NoHeapRealtimeThread
{

public PeriodicThread(...)
{ super(pp, p, ImmortalMemory.instance());
applicationLogic = logic;

}
public void run()
{
boolean noProblems = true;
while(noProblems) {
applicationLogic.run();
noProblems = waitForNextPeriod();

}
// Deadline missed. If allowed, a recovery routine here

}
public void start()
{
super.start();

}
}

Asynchronous Event Handlers
package ravenscar;
public class AsyncEventHandler implements Schedulable
{

AsyncEventHandler(PriorityParameters pp,
ReleaseParameters p, MemoryArea ma);

AsyncEventHandler(PriorityParameters pp,
ReleaseParameters p, MemoryArea ma,
java.lang.Runnable logic);

public MemoryArea getCurrentMemoryArea();
protected void handleAsyncEvent();
public final void run();

}

Bound Handlers

public class BoundAsyncEventHandler
extends AsyncEventHandler

{
BoundAsyncEventHandler(PriorityParameters pp,

MemoryArea ma, ReleaseParameters p);
BoundAsyncEventHandler(PriorityParameters pp,

MemoryArea ma, ReleaseParameters p,
java.lang.Runnable logic);

protected void handleAsyncEvent();

}

Sporadic Handlers

public class SporadicEventHandler
extends BoundAsyncEventHandler

{
public SporadicEventHandler(PriorityParameters pri,

SporadicParameters spor);
public SporadicEventHandler(PriorityParameters pri,

SporadicParameters spor,
java.lang.Runnable);

public void handleAsyncEvent();
};

Async Events
package ravenscar;
public class AsyncEvent
{
AsyncEvent();
void addHandler();
void fire();
void bindTo();

}

public class SporadicEvent extends AsyncEvent
{
public SporadicEvent(SporadicEventHandler handler);
public void fire();

}

public class SporadicInterrupt extends AsyncEvent
{
public SporadicInterrupt(SporadicEventHandler handler,

java.lang.String happening);
}

Current Status

■ Currently producing an annotation aware tool systems
■ Investigating the ease with which static analysis can be

performed on the subset (e.g. escape analysis, model
checking)

■ RVM analysis and construction

