
10/10/00 1

The Real-Time Specification for
JavaTM

Greg Bollella, Ph.D.

Senior Staff Engineer

Sun Microsystems Laboratories
greg.bollella@east.sun.com

���������	
�����
���
�������
������
�������

������� ��
������
�

���������	
�
����

10/10/00 2

Outline

� The Real-Time Specification for Java
� The Java Community Process
� JSR-1 expert group
� Guiding Principles
� Scheduling
� Memory Management
� Synchronization
� Asynchronous Event Handling
� Asynchronous Transfer of Control
� Asynchronous Thread Termination
� Physical Memory Access

10/10/00 3

The Java Community Process

� A community-wide, software development method for
extending Java APIs

� Java specification request
� Engineers nominated by participating organizations

� Lead participant named
� Specification lead forms expert group

� Specification developed
� Participant review

� Public review
� Reference implementation and test suites

10/10/00 4

JSR-1 EG Primary Team

�Greg Bollella, Sun Labs (formerly IBM)

�Ben Brosgol, Aonix

�Peter Dibble, Microware

�Steve Furr, QSSL

� James Gosling, Sun Microsystems

�David Hardin, aJile Systems

�Mark Turnbull, Nortel Networks

10/10/00 5

JSR-1 EG Consultants

� Apogee, Wolfgang Pieb

� Carnegie Mellon, Raj Rajkumar

� Lockheed Martin, Doug Locke

� Lucent, Larry Rau

� MITRE, E. Douglas Jensen

� Mitsubishi Electric, Masahiro
Kuroda

� Motorola, Edward Wentworth

� NSICom, Alexander Katz

� NIST, Alden Dima

� Rockwell- Collins, Ray Kaman

� Schneider, Rudy Belliardi

� Thomson- CSF, Jean- Michel
Meignien

� Wind River, Currently
Unassigned

� Honorary, Russ Richards

� Emeritus, George Malek

� Emeritus, Chris Yurkowski

� Emeritus, Mike Schuette

� Emeritus, Simon Waddington

10/10/00 6

Guiding Principles
� Temporally Predictable Execution
� Support Current Real-Time Application Development Practice
� Backward Compatibility

� The RTSJ maps the Java Language Semantics (JLS)
semantics to appropriate, required instances

� RTSJ Appropriate for any Java™ Platform
� WOCRAC (like WORA but different)

� Write Once Carefully Run Anywhere Conditionally
� Support Leading Edge RT Application Development and the

Real-Time Scheduling Academic Community
� No Syntactic Extension
� Allow for Implementation Trade-offs

� Toys to Cruise Missiles

� Incentive for RTOS vendors

10/10/00 7

Scheduling
� Scheduler

� Abstract base class

� Contains methods for feasibility analysis, admission control,
dispatching, and asynchronous event handling mechanism

� Can be considered distinct from the dispatcher

� Schedulable
� An Interface
� Any object implementing Schedulable is scheduled by a
Scheduler

� In the RTSJ RealtimeThreads and
AsyncEventHandlers implement Schedulable

� The RTSJ encourages implementations to extend the notion
of a schedulable object

� Each Schedulable object has a reference to a Scheduler

10/10/00 8

Scheduling

� PriorityScheduler extends Scheduler
� Required scheduler, i.e., this function will be available on all

implementations of the RTSJ

� Actually more like a dispatcher

� Fixed-priority, preemptive
� Priority assignment by application logic

� At least 28 unique priority levels for RealtimeThreads

� E.g., RMAScheduler extends Scheduler

� E.g., EDFScheduler extends Scheduler

10/10/00 9

Scheduling

� RealtimeThread extends Thread

� Managed by a scheduler

� May use memory other than the heap

� Participate in asynchronous transfer of control and thread
termination

� May access physical memory

� NoHeapRealtimeThread extends
RealtimeThread

� Not allowed to read or write to objects on the heap
� Not allowed to manipulate references to objects on the heap

� Must be created with a scoped memory area

� May immediately preempt the garbage collector

10/10/00 10

Scheduling
� SchedulingParameters

� Abstract base class for eligibility metric

� PriorityParameters
� Traditional priority
� ImportanceParameters

z Importance field for overload situations

� ReleaseParameters
� Abstract base class for release characteristics

� PeriodicParameters

� AperiodicParameters

� SporadicParameters

� MemoryParameters
� Defines a schedulable object's memory demands

� ProcessingGroupParameters
� Used to manage many aperiodic or sporadic threads as a meta-

level periodic thread

10/10/00 11

Memory Management

� We note that the JLS is curiously silent on the subject
of automatic memory reclamation (aka garbage
collection)

� Saying anything about gc seemed to require saying
more than the Java™ Programming Language
inventors wanted to say

� The JLS allows programmatic allocation of memory
(new) but has no programmatic way to deallocate
memory

� The RTSJ is also mostly silent on the matter of
garbage collection

10/10/00 12

Memory Management

Pr
ed

ic
ta

bi
lit

y

Sa
fe

ty

Automatic

Automatic

Manual

Manual

In
cr

ea
si

ng

In
cr

ea
si

ng

10/10/00 13

Memory Management

Pr
ed

ic
ta

bi
lit

y

Sa
fe

ty

Automatic

Automatic

Manual

Manual

In
cr

ea
si

ng

In
cr

ea
si

ng

Periautomatic

RTSJ RTSJ

10/10/00 14

Memory Management

� RTSJ changes the notion of object lifetime
(i.e., when an object is a candidate for
collection)

� Manual: Lifetime controlled by program logic
� Automatic: Lifetime controlled by visibility
� RTSJ Memory Types: Lifetime controlled by

syntactic scope
� Objects live until control flows out of scope
� When control leaves scope finalizers execute and

complete before the memory area is accessed

10/10/00 15

Memory Management

� Memory Areas
� Objects not managed by collector

� Immortal Memory Area
� One ImmortalMemory object per JVM™
� Pre-allocated at JVM start
� Effective scope is larger than the program, i.e., no

control in the program can ever leave the scope of
the immortal memory area

� Used for sharing between real-time threads and
sharing between real-time and non-real-time
threads

10/10/00 16

Memory Management

� Scoped Memory Areas
� Associated with one or more scopes (closure or

thread)
� Scopes may have more than one associated

memory area with one primary (where objects are
created by default)

� LTMemory - execution time of new is linear in
object size

� VTMemory - execution time of new is variable

10/10/00 17

Memory Management

� Assignment Rules, based on object lifetimes
� Heap Heap
� Heap Immortal

� Collector can traverse immortal area and be safely preempted
thus we can allow object in the immortal memory area to hold
references to objects in the heap

� Immortal Immortal
� Scoped Immortal
� Scoped Scoped (in outer or same scope)

� Partial static analysis for assignment safety is
possible (classfiles so marked)

� Runtime checks necessary for unanalyzed or
unanalyzable code

10/10/00 18

Synchronization

� Priority Inversion Control
� Default behavior of synchronized must be that of the

priority inheritance algorithm
� Other priority inversion avoidance algorithms can be

set for either all or particular monitors
� Synchronized problematic between regular Java

threads and real-time threads

� NoHeapRealtimeThreads have implicit execution
priority higher than the collector
� Correct implementation of any priority inversion avoidance

algorithm is impossible if execution priority of NHRT is
honored

� The RTSJ provides three Wait-free Queue classes

10/10/00 19

Wait-free Queues

� Unidirectional data flow and non-blocking
read/write methods

� The write() method of the
WaitFreeWriteQueue is the ‘real-time’ end

� Wait-free write queue
� Number of entries fixed at creation time
� Internal objects are allocated from appropriate

memory area
� Real-time writer does not block on queue-full or

queue-empty conditions (instead: application logic
determines action (toss, overwrite, etc.))

10/10/00 20

Asynchronous Event Handling

� Real-time and Embedded Systems are typically
tightly coupled to the REAL-WORLD

� Events in the real-world are asynchronous to
program execution

� Asynchronous events may also arise internally within
the JVM™ (i.e., programmatically)

� The RTJS provides a mechanism to bind a
schedulable object to the occurrence of an event

� When the event occurs the object’s run state
changes to ready-to-run and is scheduled wrt its
parameter objects

� Mechanism designed for tens of thousands of events
and handlers, i.e., very lightweight

10/10/00 21

Asynchronous Event Handling

� AsyncEvent

� AsyncEventHandler implements
Schedulable

� An instance of AsyncEvent represents
something that can happen

� An instance of AsyncEventHandler has a
method (handleAsyncEvent()) which
contains the logic that should execute when
the event occurs

� Handlers are bound to events by
� AsyncEvent.addHandler(AsyncEventHandler a);

10/10/00 22

Asynchronous Event Handling

� An instance of AsyncEvent may be bound to
an external event using
� AsyncEvent.bindTo(String s)

� There are two ways AsyncEvents occur
� The method AsyncEvent.fire() is invoked or
� an external event occurs

� The execution of handlers is required to be
semantically equivalent, wrt scheduling, to
instances of RealtimeThread

10/10/00 23

Asynchronous Transfer of Control

� The Real-Time for Java™ Consultants requested the
RTSJ include a concept for allowing the
asynchronous transfer of the flow of execution to
some predetermined, syntactically defined point in
the program

� The ATC mechanism is similar to exception handling
in the JLS (Java exceptions are synchronous).

� The prime directive for ATC (from ourselves) is:
� Code written without a priori knowledge of

possible interruption must not be interrupted
� How does the RTSJ accomplish the prime

directive?

10/10/00 24

Asynchronous Transfer of Control

� AsynchronouslyInterruptedException

� Only the code within a method with AIE in
its throws clause is interruptible

�Timed

�Interruptible (an interface)
� Classes which implement can be given to
Timed constructor

10/10/00 25

Asynchronous Transfer of Control

� How does logic asynchronously transfer
control?
� javax.RealtimeThread.interrupt() has

additional semantics
� when t.interrupt() is executed an AIE is thrown at

thread t and then if:
� control is in any method with AIE in its throws clause

then control will transfer to the calling method with an AIE
� control is in any method without AIE in its throws clause

or in any synchronized block/method the method or block
will complete normally and the AIE is set to pending

10/10/00 26

Interruptible I/O Methods

� The consultants required that the RTSJ
should allow a mechanism which would
preclude indefinitely blocked I/O calls.

� Methods in java.io.* now throw
IOException, however, it's typically not
implemented.

� Two cases:
1. The device (and thus its stream) is no longer

needed (or the device no longer exists).
2. Timed, non-blocking I/O calls (when the device

and its associated streams remain viable).

10/10/00 27

Interruptible I/O Methods

�Case 1: Device no longer needed or
gone.
� Semantics of stream.close() and the

I/O methods are required to be modified.
� Blocked I/O calls are required to throw

appropriate instances of IOException when
stream.close() is called on the stream on
which they are blocked.

10/10/00 28

Interruptible I/O Methods

�Case 2: Timed, non-blocking I/O calls
for devices and their streams which
remain viable.
� Programming pattern

� A simple non-timed, non-blocking I/O call can
be easily built from two AsyncEvents and their
handlers.

10/10/00 29

Non-Blocking I/O

handleAsyncEvent () {

// handler for ae1

c = stream.read();

// handle IOException

// put c somewhere

ae2.fire();

}

nonblockingRead () {

//setup, etc.

ae1.fire();

}

handleAsyncEvent () {

// handler for ae2

// get c

// do something with c

}

10/10/00 30

Asynchronous Thread Termination

� To asynchronously terminate a thread is a
requirement from the consultants

� Arbitrary thread termination is as unsafe as is
arbitrary asynchronous transfer of control
thus the same prime directive applies

� ATT typically implies that logic can cause a
thread to terminate when some external
happening occurs

� The RTSJ allows ATT by use of the
asynchronous event handling and
asynchronous transfer of control mechanisms

10/10/00 31

Physical Memory Access

� Requirement by consultants and industry
input

� Generalized abstraction of such access is
beyond the scope of the charter of the Real-
Time for Java Expert Group (RTJEG)
(actually, we thought that we did not really
know enough about all of the various memory
types to create a useful abstraction)

� The RTJEG chose to specify a low-level
mechanism useful for building higher-level
abstractions

10/10/00 32

Physical Memory Access

� MemoryArea
� ImmortalMemory
� ImmortalPhysicalMemory

� ScopedMemory
� LTMemory
� ScopedPhysicalMemory
� VTMemory

� PhysicalMemoryFactory
� RawMemoryAccess

� RawMemoryFloatAccess

10/10/00 33

Physical Memory Access

� Two styles of access
� Ability to set and get bytes of physical memory

� Useful for device control
� RawMemoryAccess
� RawMemoryFloatAccess

� Ability to allocate objects in physical memory
� Programmer managed object cache
� ImmortalPhysicalMemory
� ScopedPhysicalMemory

� Programmers use the physical memory factory to
create instances of the three classes

10/10/00 34

Summary

� The RTSJ addresses seven areas:
Scheduling, Memory Management,
Synchronization, Asynchronous (Event
Handling, Transfer of Control, Thread
Termination), and Physical Memory Access

� Current version always available at
www.rtj.org

� Comments to: comments@rtj.org
� “The Real-Time Specification for Java”,

Addison-Wesley, June 2000
� Reference implementation target mid-2001

10/10/00 35

Code Examples

� RealtimeThread

� PeriodicThread

� Scheduler

� ScopedMemory

� AsyncEvent

� Timer

� AsynchronouslyInterruptedException

10/10/00 36

RealtimeThread

public class ReceiveThread extends RealtimeThread {

public void run() {

/* logic for receive thread */}

}

public void example() {

RealtimeThread rt = new ReceiveThread();

if (!rt.getScheduler().isFeasible())

throw new Exception("Whatever...");

rt.start();

}

10/10/00 37

PeriodicThread

public class PeriodicThread extends RealtimeThread {

PeriodicThread(MyPeriodicParameters pp,

MemoryParameters mp, Runnable r) {

super(pp.sp, pp, mp, null, null, r);

}}

10/10/00 38

Periodic Thread

public MyPeriodicParameters(RelativeTime period,
RelativeTime cost) {

super(null, /* no start time */

period,

cost,

null, /* deadline == period */

null, /* no overrun handler */

null); /* no miss handler */

sp = new PriorityParameters(determinePriority());}}

10/10/00 39

PeriodicThread

RealtimeThread rt = new PeriodicThread(

new MyPeriodicParameters(new RelativeTime(50, 0),

determineCost()),

new Runnable() {

public void run() {

RealtimeThread t;

try {

t =

(RealtimeThread)Thread.currentThread();

do {

/* thread logic. */

} while (t.waitForNextPeriod());

} catch (ClassCastException e) {}}});

10/10/00 40

Finding a New Scheduler

public class SchedulerExample {

public static Scheduler findScheduler(String policy) {

String className = System.getProperty(

"javax.realtime.scheduler." + policy);

Class clazz;

try {

if (className != null

&& (clazz = Class.forName(className)) != null){

return (Scheduler)clazz.getMethod(

"instance",null).invoke(null,null);

}

} catch (/* lots of exceptions */) {

return null;

}

10/10/00 41

Finding a New Scheduler

Scheduler scheduler = findScheduler("EDF");

if (scheduler != null) {

RealtimeThread t1 = new RealtimeThread(null,

new PeriodicParameters(

null, new RelativeTime(100, 0),

new RelativeTime(5, 0),

new RelativeTime(50, 0), null,

null),

null,null,null,null) {

public void run() {

/* thread processing */

}};

t1.setScheduler(scheduler);

t1.start();

}

10/10/00 42

ScopedMemory

final ScopedMemory scope = new LTMemory(1024, 16 * 1024);

scope.enter(new Runnable() {

public void run() {

/* Do some time-critical operations */

try {

/* To allocate from the heap */

HeapMemory.instance()

.newInstance(Class.forName("Foo"));

/* Allocate from the previous scope*/

scope.getOuterScope()

.newInstance(Class.forName("Foo"));

} catch (ClassNotFoundException e) {

} catch (IllegalAccessException ia) {

} catch (InstantiationException ie) {

}}});

10/10/00 43

ScopedMemory

final ScopedMemory scope =
new LTMemory(0, 16 * 1024);

RealtimeThread t1 =
new RealtimeThread(null, null,
new MemoryParameters(100000, 0), scope, null,
new Runnable() {

public void run() {
/* do some stuff */
}});

10/10/00 44

AsyncEvent

try {
AsyncEvent inputReady = new AsyncEvent();
AsyncEventHandler h = new AsyncEventHandler() {
public void handleAsyncEvent() {
System.out.print("The first Handler ran!\n");

}
};
inputReady.addHandler(h);
System.out.print("Test 1\n");
inputReady.fire();
Thread.yield();
System.out.print("Fired the event\n");

10/10/00 45

AsyncEvent

SchedulingParameters low = new
PriorityParameters(PriorityScheduler

.getMinPriority(null));
inputReady.setHandler(new AsyncEventHandler(low,

null, null, null, null) {
public void handleAsyncEvent() {
System.out.print("The low priority handler

ran!\n");}});
SchedulingParameters high = new

PriorityParameters(PriorityScheduler
.getMaxPriority(null));

inputReady.addHandler(new AsyncEventHandler(high,
null, null, null, null) {

public void handleAsyncEvent() {
System.out.print("The high priority handler

ran!\n");}});

10/10/00 46

AsyncEvent

System.out.print("\nTest 2\n");

inputReady.fire();

System.out.print("After the fire\n");

Thread.sleep(100);

System.out.print("After the sleep\n");

10/10/00 47

AsyncEvent Output

Test 1

The first handler ran!

Fired the event

Test 2

The high priority handler ran!

After the fire

The low priority handler ran!

After the sleep

10/10/00 48

Timer
public class TimerExample {

private static final
SchedulingParameters highPriority = new

PriorityParameters(PriorityScheduler.getMaxPriority(null));
private static void TestTimer(String title, Timer t) {

ReleaseParameters rp = t.createReleaseParameters();
rp.setCost(new RelativeTime(10, 0));
t.addHandler(new

AsyncEventHandler(highPriority,rp,null,null,null) {
public void handleAsyncEvent() {

System.out.print(" Timer went off at "
+ (System.currentTimeMillis() - T0) + "\n");}});

t.start();
//USE
TestTimer("One Shot",

new OneShotTimer(new RelativeTime(100, 0), null))
TestTimer("Periodic",

new PeriodicTimer(new RelativeTime(100, 0),
new RelativeTime(100, 0), null));

10/10/00 49

AsynchronouslyInterruptedExc
eption

public void example() {
MyInterrupt aie = new MyInterrupt();
aie.doInterruptible(new Interruptible() {
public void runNonInterruptible() {

/* do something that can't be interrupted */
}
public void run(AsynchronouslyInterruptedException e)

throws AsynchronouslyInterruptedException {
/* This method can be interrupted at any point in time */
runNonInterruptible();
e.disable();
e.enable();

}
public void interruptAction(

AsynchronouslyInterruptedException e) {
/* code which executes if run() method interrupted */

}});

