
The Real-Time Specification
for Java™

The Real-Time for Java Expert Group
http://www.rtj.org

Greg Bollella
Ben Brosgol Peter Dibble
Steve Furr James Gosling

David Hardin Mark Turnbull
Rudy Belliardi

The Reference Implementation Team
Doug Locke
Scott Robbins
Pratik Solanki

Dionisio de Niz

ADDISON-WESLEY
Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Copyright © 2000 Addison-Wesley.

Duke logo designed by Joe Palrang.

Sun, Sun Microsystems, the Sun logo, the Duke logo, and all Sun, Java, Jini, and Solaris based trademarks and
logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

U.S. GOVERNMENT USE:This specification relates to commercial items, processes or software.
Accordingly, use by the United States Government is subject to these terms and conditions, consistent with
FAR12.211 and 12.212.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. THE REAL-TIME
FOR JAVA EXPERT GROUP MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME. IN
PARTICULAR, THIS EDITION OF THE SPECIFICATION HAS NOT YET BEEN FINALIZED: THIS
SPECIFICATION IS BEING PRODUCED FOLLOWING THE JAVA COMMUNITY PROCESS AND
HENCE WILL NOT BE FINALIZED UNTIL THE REFERENCE IMPLEMENTATION IS COMPLETE.
THE EXPERIENCE OF BUILDING THAT REFERENCE IMPLEMENTATION MAY LEAD TO
CHANGES IN THE SPECIFICATION.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit Addison-Wesley on the Web at www.awl.com/cseng/

Library of Congress Control Number: 00-132774

ISBN 0-201-70323-8
Text printed on recycled paper.

1 2 3 4 5 6 7 8 9 10-MA-04 03 02 01 00
First printing, June 2000

To Vicki, who has been committed to our effort from the beginning — GB

To Deb, Abz, and Dan, for making it all worthwhile — BB

To Ken Kaplan and my family, who allowed me the
time and resources for this work — PD

To Linda, who has always been a true friend, cared for my home in my absences,
welcomed me at the airport and generally shown patience and consideration — SF

To Judy, Kelsey, and Kate, who gave me the
Love and Time to work on this book — JG

To Debbie, Sam, and Anna, who endured my frequent absences, and general
absentmindedness, during the writing of this book — DH

To my daughters Christine, Heather, and Victoria, and especially to my wife Terry,
who all put up with my strange working hours — MT

To my mother Maria, brother Luigi, sister-in-law Claude, and nephew Nicola — RB

To my wife Kathy for her unflagging support throughout this effort, and her patience with
the time required to complete this work — DL

To my mother Donna and my father Jerry, who put up with me all these years, and my
brother Kenneth who introduced me to computers in the first place — SR

To my wife Sohini, for her love and understanding — PS

To my wife Chelo, for her love, support and understanding in this journey; and to my
daughters Ana and Sofia, the light of the journey — DdN

To the Stanford Inn-by-the-Sea, the Chicago Hilton, and the Chateau Laurier for
providing space for a bunch of geeks to hang out; and to the Beaver Tail vendors by the

Rideau Canal for providing a yummy distraction.

5

Contents

1 Introduction ... 1
2 Design ... 5
3 Threads .. 21

RealtimeThread .. 23
NoHeapRealtimeThread ... 33

4 Scheduling .. 37
Schedulable ... 41
Scheduler .. 45
PriorityScheduler .. 47
SchedulingParameters .. 51
PriorityParameters .. 51
ImportanceParameters .. 52
ReleaseParameters .. 54
PeriodicParameters ... 57
AperiodicParameters .. 59
SporadicParameters .. 61
ProcessingGroupParameters ... 67

5 Memory Management .. 71
MemoryArea ... 77
HeapMemory .. 81
ImmortalMemory ... 82
SizeEstimator .. 82
ScopedMemory ... 84
VTMemory ... 90
LTMemory ... 92
PhysicalMemoryManager ... 95
PhysicalMemoryTypeFilter .. 98
ImmortalPhysicalMemory .. 100
LTPhysicalMemory .. 106
VTPhysicalMemory ... 112
RawMemoryAccess .. 117
RawMemoryFloatAccess ... 125
MemoryParameters ... 129
GarbageCollector .. 132

6 Synchronization ... 135

CONTENTS

6

MonitorControl ... 136
PriorityCeilingEmulation ... 138
PriorityInheritance .. 138
WaitFreeWriteQueue ... 139
WaitFreeReadQueue .. 141
WaitFreeDequeue ... 144

7 Time .. 147
HighResolutionTime .. 148
AbsoluteTime ... 152
RelativeTime .. 156
RationalTime .. 160

8 Timers .. 165
Clock .. 166
Timer .. 168
OneShotTimer .. 170
PeriodicTimer ... 171

9 Asynchrony .. 175
AsyncEvent .. 181
AsyncEventHandler ... 183
BoundAsyncEventHandler ... 195
Interruptible .. 197
AsynchronouslyInterruptedException .. 198
Timed ... 201

10 System and Options .. 203
POSIXSignalHandler ... 204
RealtimeSecurity .. 209
RealtimeSystem .. 210

11 Exceptions .. 213
DuplicateFilterException ... 214
InaccessibleAreaException .. 214
MemoryTypeConflictException ... 215
MemoryScopeException .. 216
MITViolationException ... 216
OffsetOutOfBoundsException ... 217
SizeOutOfBoundsException .. 217
UnsupportedPhysicalMemoryException .. 218
MemoryInUseException .. 219
ScopedCycleException ... 219
UnknownHappeningException .. 220
IllegalAssignmentError .. 220
MemoryAccessError .. 221

CONTENTS

7

ResourceLimitError .. 221
ThrowBoundaryError ... 222

12 Almanac ... 225
Bibliography .. 259
Index ... 265

CONTENTS

8

1

C h a p t e r 1
Introduction

The Real-Time for Java Expert Group (RTJEG), convened under the Java Community
Process and JSR-000001, has been given the responsibility of producing a
specification for extending The Java Language Specification and The Java Virtual
Machine Specification and of providing an Application Programming Interface that
will enable the creation, verification, analysis, execution, and management of Java
threads whose correctness conditions include timeliness constraints (also known as
real-time threads). This introduction describes the guiding principles that the RTJEG
created and used during our work, a description of the real-time Java requirements
developed under the auspices of The National Institute for Standards and Technology
(NIST), and a brief, high-level description of each of the seven areas we identified as
requiring enhancements to accomplish our goal.

Guiding Principles :
The guiding principles are high-level statements that delimit the scope of the work of
the RTJEG and introduce compatibility requirements for The Real-Time Specification
for Java.

Applicability to Particular Java Environments: The RTSJ shall not include
specifications that restrict its use to particular Java environments, such as a particular
version of the Java Development Kit, the Embedded Java Application Environment,
or the Java 2 Micro Edition™.

Backward Compatibility: The RTSJ shall not prevent existing, properly written,
non-real-time Java programs from executing on implementations of the RTSJ.

CHAPTER 1 INTRODUCTION

2

Write Once, Run Anywhere: The RTSJ should recognize the importance of
“Write Once, Run Anywhere”, but it should also recognize the difficulty of achieving
WORA for real-time programs and not attempt to increase or maintain binary
portability at the expense of predictability.

Current Practice vs. Advanced Features: The RTSJ should address current
real-time system practice as well as allow future implementations to include advanced
features.

Predictable Execution: The RTSJ shall hold predictable execution as first
priority in all tradeoffs; this may sometimes be at the expense of typical general-
purpose computing performance measures.

No Syntactic Extension: In order to facilitate the job of tool developers, and thus
to increase the likelihood of timely implementations, the RTSJ shall not introduce
new keywords or make other syntactic extensions to the Java language.

Allow Variation in Implementation Decisions: The RTJEG recognizes that
implementations of the RTSJ may vary in a number of implementation decisions, such
as the use of efficient or inefficient algorithms, tradeoffs between time and space
efficiency, inclusion of scheduling algorithms not required in the minimum
implementation, and variation in code path length for the execution of byte codes. The
RTSJ should not mandate algorithms or specific time constants for such, but require
that the semantics of the implementation be met. The RTSJ offers implementers the
flexibility to create implementations suited to meet the requirements of their
customers.

Overview of the Seven Enhanced Areas :
In each of the seven sections that follow we give a brief statement of direction for
each area. These directions were defined at the first meeting of the eight primary
engineers in Mendocino, California, in late March 1999, and further clarified through
late September 1999.

Thread Scheduling and Dispatching: In light of the significant diversity in
scheduling and dispatching models and the recognition that each model has wide
applicability in the diverse real-time systems industry, we concluded that our direction
for a scheduling specification would be to allow an underlying scheduling mechanism
to be used by real-time Java threads but that we would not specify in advance the
exact nature of all (or even a number of) possible scheduling mechanisms. The
specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will allow the programmatic assignment of
parameters appropriate for the underlying scheduling mechanism as well as providing
any necessary methods for the creation, management, admittance, and termination of
real-time Java threads. We also expect that, for now, particular thread scheduling and
dispatching mechanisms are bound to an implementation. However, we provide

INTRODUCTION

3

enough flexibility in the thread scheduling framework to allow future versions of the
specification to build on this release and allow the dynamic loading of scheduling
policy modules.

To accomodate current practice the RTSJ requires a base scheduler in all
implementations. The required base scheduler will be familiar to real-time system
programmers. It is priority-based, preemptive, and must have at least 28 unique
priorities.

Memory Management: We recognize that automatic memory management is a
particularly important feature of the Java programming environment, and we sought a
direction that would allow, as much as possible, the job of memory management to be
implemented automatically by the underlying system and not intrude on the
programming task. Additionally, we understand that many automatic memory
management algorithms, also known as garbage collection (GC), exist, and many of
those apply to certain classes of real-time programming styles and systems. In our
attempt to accommodate a diverse set of GC algorithms, we sought to define a
memory allocation and reclamation specification that would:

• be independent of any particular GC algorithm,

• allow the program to precisely characterize a implemented GC algorithm’s effect
on the execution time, preemption, and dispatching of real-time Java threads, and

• allow the allocation and reclamation of objects outside of any interference by any
GC algorithm.

Synchronization and Resource Sharing: Logic often needs to share serializable
resources. Real-time systems introduce an additional complexity: priority inversion.
We have decided that the least intrusive specification for allowing real-time safe
synchronization is to require that implementations of the Java keyword
synchronized include one or more algorithms that prevent priority inversion among
real-time Java threads that share the serialized resource. We also note that in some
cases the use of the synchronized keyword implementing the required priority
inversion algorithm is not sufficient to both prevent priority inverison and allow a
thread to have an execution eligibility logically higher than the garbage collector. We
provide a set of wait-free queue classes to be used in such situations.

Asynchronous Event Handling: Real-time sytems typically interact closely with
the real-world. With respect to the execution of logic, the real-world is asynchronous.
We thus felt compelled to include efficient mechanisms for programming disciplines
that would accommodate this inherent asynchrony. The RTSJ generalizes the Java
language’s mechanism of asynchronous event handling. Required classes represent
things that can happen and logic that executes when those things happen. A notable
feature is that the execution of the logic is scheduled and dispatched by an
implemented scheduler.

CHAPTER 1 INTRODUCTION

4

Asynchronous Transfer of Control: Sometimes the real-world changes so
drastically (and asynchronously) that the current point of logic execution should be
immediately and efficiently transferred to another location. The RTSJ includes a
mechanism which extends Java’s exception handling to allow applications to
programatically change the locus of control of another Java thread. It is important to
note that the RTSJ restricts this asynchronous transfer of control to logic specifically
written with the assumption that its locus of control may asynchronously change.

Asynchronous Thread Termination: Again, due to the sometimes drastic and
asynchronous changes in the real-world, application logic may need to arrange for a
real-time Java thread to expeditiously and safely transfer its control to its outermost
scope and thus end in a normal manner. Note that unlike the traditional, unsafe, and
deprecated Java mechanism for stopping threads, the RTSJ’s mechanism for
asynchronous event handling and transfer of control is safe.

Physical Memory Access: Although not directly a real-time issue, physical
memory access is desirable for many of the applications that could productively make
use of an implementation of the RTSJ. We thus define a class that allows
programmers byte-level access to physical memory as well as a class that allows the
construction of objects in physical memory.

5

C h a p t e r 2
Design

The RTSJ comprises eight areas of extended semantics. This chapter explains each in
fair detail. Further detail, exact requirements, and rationale are given in the opening
section of each relevant chapter. The eight areas are discussed in approximate order of
their relevance to real-time programming. However, the semantics and mechanisms of
each of the areas —- scheduling, memory management, synchronization,
asynchronous event handling, asynchronous transfer of control, asynchronous thread
termination, physical memory access, and exceptions —- are all crucial to the
acceptance of the RTSJ as a viable real-time development platform.

Scheduling :
One of the concerns of real-time programming is to ensure the timely or predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently. Typically used names include threads,
tasks, modules, and blocks. The RTSJ introduces the concept of a schedulable object.
Any instance of any class implementing the interface Schedulable is a schedulable
object and its scheduling and dispatching will be managed by the instance of
Scheduler to which it holds a reference. The RTSJ requires three classes that are
schedulable objects; RealtimeThread, NoHeapRealtimeThread, and
AsyncEventHandler.

By timely execution of threads, we mean that the programmer can determine by
analysis of the program, testing the program on particular implementations, or both
whether particular threads will always complete execution before a given timeliness
constraint. This is the essence of real-time programming: the addition of temporal

CHAPTER 2 DESIGN

6

constraints to the correctness conditions for computation. For example, for a program
to compute the sum of two numbers it may no longer be acceptable to compute only
the correct arithmetic answer but the answer must be computed before a particular
time. Typically, temporal constraints are deadlines expressed in either relative or
absolute time.

We use the term scheduling (or scheduling algorithm) to refer to the production of
a sequence (or ordering) for the execution of a set of threads (a schedule). This
schedule attempts to optimize a particular metric (a metric that measures how well the
system is meeting the temporal constraints). A feasibility analysis determines if a
schedule has an acceptable value for the metric. For example, in hard real-time
systems the typical metric is “number of missed deadlines” and the only acceptable
value for that metric is zero. So called soft real-time systems use other metrics (such
as mean tardiness) and may accept various values for the metric in use.

Many systems use thread priority in an attempt to determine a schedule. Priority
is typically an integer associated with a thread; these integers convey to the system the
order in which the threads should execute. The generalization of the concept of
priority is execution eligibility. We use the term dispatching to refer to that portion of
the system which selects the thread with the highest execution eligibility from the
pool of threads that are ready to run. In current real-time system practice, the
assignment of priorities is typically under programmer control as opposed to under
system control. The RTSJ’s base scheduler also leaves the assignment of priorities
under programmer control. However, the base scheduler also inherits methods from
its superclass to determine feasibility. The feasibility algorithms assume that the rate-
monotonic priority assignment algorithm has been used to assign priorities. The RTSJ
does not require that implementations check that such a priority assignment is correct.
If, of course, the assignment is incorrect the feasibility analysis will be meaningless
(note however, that this is no different than the vast majority of real-time operating
systems and kernels in use today).

The RTSJ requires a number of classes with names of the format
<string>Parameters (such as SchedulingParameters). An instance of one of
these parameter classes holds a particular resource demand characteristic for one or
more schedulable objects. For example, the PriorityParameters subclass of
SchedulingParameters contains the execution eligibility metric of the base
scheduler, i.e., priority. At some times (thread create-time or set (reset)), later
instances of parameter classes are bound to a schedulable object. The schedulable
object then assumes the characteristics of the values in the parameter object. For
example, if a PriorityParameter instance that had in its priority field the value
representing the highest priority available is bound to a schedulable object, then that
object will assume the characteristic that it will execute whenever it is ready in
preference to all other schedulable objects (except, of course, those also with the
highest priority).

DESIGN

7

The RTSJ is written so as to allow implementers the flexibility to install arbitrary
scheduling algorithms and feasibility analysis algorithms in an implementation of the
specification. We do this because the RTJEG understands that the real-time systems
industry has widely varying requirements with respect to scheduling. Programming to
the Java platform may result in code much closer toward the goal of reusing software
written once but able to execute on many different computing platforms (known as
Write Once, Run Anywhere) and realizing that the above flexibility stands in
opposition to that goal, The Real-Time Specification for Java also specifies a
particular scheduling algorithm and semantic changes to the JVM that support
predictable execution and must be available on all implementations of the RTSJ. The
initial default and required scheduling algorithm is fixed-priority preemptive with at
least 28 unique priority levels and will be represented in all implementations by the
PriorityScheduler subclass of Scheduler.

Memory Management :
Garbage-collected memory heaps have always been considered an obstacle to real-
time programming due to the unpredictable latencies introduced by the garbage
collector. The RTSJ addresses this issue by providing several extensions to the
memory model, which support memory management in a manner that does not
interfere with the ability of real-time code to provide deterministic behavior. This goal
is accomplished by allowing the allocation of objects outside of the garbage-collected
heap for both short-lived and long-lived objects.

Memory Areas
The RTSJ introduces the concept of a memory area. A memory area represents an area
of memory that may be used for the allocation of objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity of
the heap.

There are four basic types of memory areas:

1. Scoped memory provides a mechanism for dealing with a class of objects that
have a lifetime defined by syntactic scope (cf, the lifetime of objects on the heap).

2. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that has
substantially faster access.

3. Immortal memory represents an area of memory containing objects that, once
allocated, exist until the end of the application, i.e., the objects are immortal.

4. Heap memory represents an area of memory that is the heap. The RTSJ does not

CHAPTER 2 DESIGN

8

change the determinant of lifetime of objects on the heap. The lifetime is still
determined by visibility.

Scoped Memory
The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use of new causes the memory to be allocated from the active memory scope. A
scope may be entered explicitly, or it can be attached to a RealtimeThread which will
effectively enter the scope before it executes the thread’s run() method.

Every scoped memory area effectively maintains a count of the number of
external references to that memory area. The reference count for a ScopedMemory
area is increased by entering a new scope through the enter() method of
MemoryArea, by the creation of a RealtimeThread using the particular
ScopedMemory area, or by the opening of an inner scope. The reference count for a
ScopedMemory area is decreased when returning from the enter() method, when the
RealtimeThread using the ScopedMemory exits, or when an inner scope returns from
its enter() method. When the count drops to zero, the finalize method for each
object in the memory is executed to completion. The scope cannot be reused until
finalization is complete and the RTSJ requires that the finalizers execute to
completion before the next use (calling enter() or in a constructor) of the scoped
memory area.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope is
exited, the previous scope is restored and subsequent allocations are again taken from
that scope.

Because of the unusual lifetimes of scoped objects, it is necessary to limit the
references to scoped objects, by means of a restricted set of assignment rules. A
reference to a scoped object cannot be assigned to a variable from an enclosing scope,
or to a field of an object in either the heap or the immortal area. A reference to a
scoped object may only be assigned into the same scope or into an inner scope. The
virtual machine must detect illegal assignment attempts and must throw an
appropriate exception when they occur.

The flexibility provided in choice of scoped memory types allows the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

Immortal Memory
ImmortalMemory is a memory resource shared among all threads in an application.
Objects allocated in ImmortalMemory are freed only when the Java runtime
environment terminates, and are never subject to garbage collection or movement.

DESIGN

9

Budgeted Allocation
The RTSJ also provides limited support for providing memory allocation budgets for
threads using memory areas. Maximum memory area consumption and maximum
allocation rates for individual real-time threads may be specified when the thread is
created.

Synchronization :

Terms
For the purposes of this section, the use of the term priority should be interpreted
somewhat more loosely than in conventional usage. In particular, the term highest
priority thread merely indicates the most eligible thread —- the thread that the
dispatcher would choose among all of the threads that are ready to run —- and doesn’t
necessarily presume a strict priority based dispatch mechanism.

Wait Queues
Threads waiting to acquire a resource must be released in execution eligibility order.
This applies to the processor as well as to synchronized blocks. If threads with the
same execution eligibility are possible under the active scheduling policy, such
threads are awakened in FIFO order. For example:

• Threads waiting to enter synchronized blocks are granted access to the synchro-
nized block in execution eligibility order.

• A blocked thread that becomes ready to run is given access to the processor in
execution eligibility order.

• A thread whose execution eligibility is explicitly set by itself or another thread is
given access to the processor in execution eligibility order.

• A thread that performs a yield will be given access to the processor after waiting
threads of the same execution eligibility.

• Threads that are preempted in favor of a thread with higher execution eligibility
may be given access to the processor at any time as determined by a particular
implementation. The implementation is required to provide documentation stat-
ing exactly the algorithm used for granting such access.

Priority Inversion Avoidance
Any conforming implementation must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no
unbounded priority inversion. Furthermore, this must apply to code if it is run within
the implementation as well as to real-time threads. The priority inheritance protocol
must be implemented by default. The priority inheritance protocol is a well-known
algorithm in the real-time scheduling literature and it has the following effect. If

CHAPTER 2 DESIGN

10

thread t1 attempts to acquire a lock that is held by a lower-priority thread t2, then t2’s
priority is raised to that of t1 as long as t2 holds the lock (and recursively if t2 is itself
waiting to acquire a lock held by an even lower-priority thread).

The specification also provides a mechanism by which the programmer can
override the default system-wide policy, or control the policy to be used for a
particular monitor, provided that policy is supported by the implementation. The
monitor control policy specification is extensible so that new mechanisms can be
added by future implementations.

A second policy, priority ceiling emulation protocol (or highest locker protocol),
is also specified for systems that support it. The highest locker protocol is also a well-
known algorithm in the literature, and it has the following effect:

• With this policy, a monitor is given a priority ceiling when it is created, which is
the highest priority of any thread that could attempt to enter the monitor.

• As soon as a thread enters synchronized code, its priority is raised to the moni-
tor’s ceiling priority, thus ensuring mutually exclusive access to the code since it
will not be preempted by any thread that could possibly attempt to enter the same
monitor.

• If, through programming error, a thread has a higher priority than the ceiling of
the monitor it is attempting to enter, then an exception is thrown.

One needs to consider the design point given above, the two new thread types,
RealtimeThread and NoHeapRealtimeThread, and regular Java threads and the
possible issues that could arise when a NoHeapRealtimeThread and a regular Java
thread attempt to synchronize on the same object. NoHeapRealtimeThreads have an
implicit execution eligibility that must be higher than that of the garbage collector.
This is fundamental to the RTSJ. However, given that regular Java threads may never
have an execution eligibility higher than the garbage collector, no known priority
inversion avoidance algorithm can be correctly implemented when the shared object
is shared between a regular Java thread and a NoHeapRealtimeThread because the
algorithm may not raise the priority of the regular Java thread higher than the garbage
collector. Some mechanism other than the synchronized keyword is needed to ensure
non-blocking, protected access to objects shared between regular Java threads and
NoHeapRealtimeThreads.

Note that if the RTSJ requires that the execution of NoHeapRealtimeThreads
must not be delayed by the execution of the garbage collector it is impossible for a
NoHeapRealtimeThread to synchronize, in the classic sense, on an object accessed
by regular Java threads. The RTSJ provides three wait-free queue classes to provide
protected, non-blocking, shared access to objects accessed by both regular Java
threads and NoHeapRealtimeThreads. These classes are provided explicitly to enable

DESIGN

11

communication between the real-time execution of NoHeapRealtimeThreads and
regular Java threads.

One needs also to consider the possible issues that could arise when a
NoHeapRealtimeThread and a RealtimeThread attempt to synchronize on the same
object. In this case if the NoHeapRealtimeThread blocks on the synchronization with
the RealtimeThread and the RealtimeThread gets into a situation where the garbage
collector will run, then the NoHeapRealtimeThread will find itself blocked on the
garbage collector due to normal boosting. In general, the synchronization with a
thread that can do garbage collection is a situation to be avoided, or the programmer
must be ready for the consequences.

Determinism
Conforming implementations shall provide a fixed upper bound on the time required
to enter a synchronized block for an unlocked monitor.

Asynchronous Event Handling :
The asynchronous event facility comprises two classes: AsyncEvent and
AsyncEventHandler. An AsyncEvent object represents something that can happen,
like a POSIX signal, a hardware interrupt, or a computed event like an airplane
entering a specified region. When one of these events occurs, which is indicated by
the fire() method being called, the associated handleAsyncEvent() methods of
instances of AsyncEventHandler are scheduled and thus perform the required logic.

An instance of AsyncEvent manages two things: 1) the unblocking of handlers
when the event is fired, and 2) the set of handlers associated with the event. This set
can be queried, have handlers added, or have handlers removed.

An instance of AsyncEventHandler can be thought of as something roughly
similar to a thread. It is a Runnable object: when the event fires, the
handleAsyncEvent() methods of the associated handlers are scheduled. What
distinguishes an AsyncEventHandler from a simple Runnable is that an
AsyncEventHandler has associated instances of ReleaseParameters,
SchedulingParameters and MemoryParameters that control the actual execution of
the handler once the associated AsyncEvent is fired. When an event is fired, the
handlers are executed asynchronously, scheduled according to the associated
ReleaseParameters and SchedulingParameters objects, in a manner that looks
like the handler has just been assigned to its own thread. It is intended that the system
can cope well with situations where there are large numbers of instances of
AsyncEvent and AsyncEventHandler (tens of thousands). The number of fired (in
process) handlers is expected to be smaller.

A specialized form of an AsyncEvent is the Timer class, which represents an
event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and the PeriodicTimer. Instances of OneShotTimer fire once, at the

CHAPTER 2 DESIGN

12

specified time. Periodic timers fire off at the specified time, and then periodically
according to a specified interval.

Timers are driven by Clock objects. There is a special Clock object,
Clock.getRealtimeClock(), that represents the real-time clock. The Clock class
may be extended to represent other clocks the underlying system might make
available (such as a soft clock of some granularity).

Asynchronous Transfer of Control :
Many times a real-time programmer is faced with a situation where the computational
cost of an algorithm is highly variable, the algorithm is iterative, and the algorithm
produces successively refined results during each iteration. If the system, before
commencing the computation, can determine only a time bound on how long to
execute the computation (i.e., the cost of each iteration is highly variable and the
minimum required latency to terminate the computation and receive the last
consistent result is much less than about half of the mean iteration cost), then
asynchronously transferring control from the computation to the result transmission
code at the expiration of the known time bound is a convenient programming style.
The RTSJ supports this and other styles of programming where such transfer is
convenient with a feature termed Asynchronous Transfer of Control (ATC).

The RTSJ’s approach to ATC is based on several guiding principles, outlined in
the following lists.

Methodological Principles
• A thread needs to explicitly indicate its susceptibility to ATC. Since legacy code

or library methods might have been written assuming no ATC, by default ATC
should be turned off (more precisely, it should be deferred as long as control is in
such code).

• Even if a thread allows ATC, some code sections need to be executed to comple-
tion and thus ATC is deferred in such sections. The ATC-deferred sections are
synchronized methods and statements.

• Code that responds to an ATC does not return to the point in the thread where the
ATC was triggered; that is, an ATC is an unconditional transfer of control.
Resumptive semantics, which returns control from the handler to the point of
interruption, are not needed since they can be achieved through other mechanisms
(in particular, an AsyncEventHandler).

Expressibility Principles
• A mechanism is needed through which an ATC can be explicitly triggered in a

target thread. This triggering may be direct (from a source thread) or indirect
(through an asynchronous event handler).

DESIGN

13

• It must be possible to trigger an ATC based on any asynchronous event including
an external happening or an explicit event firing from another thread. In particu-
lar, it must be possible to base an ATC on a timer going off.

• Through ATC it must be possible to abort a thread but in a manner that does not
carry the dangers of the Thread class’s stop() and destroy() methods.

Semantic Principles
• If ATC is modeled by exception handling, there must be some way to ensure that

an asynchronous exception is only caught by the intended handler and not, for
example, by an all-purpose handler that happens to be on the propagation path.

• Nested ATCs must work properly. For example, consider two nested ATC-based
timers and assume that the outer timer has a shorter timeout than the nested, inner
timer. If the outer timer times out while control is in the nested code of the inner
timer, then the nested code must be aborted (as soon as it is outside an ATC-
deferred section), and control must then transfer to the appropriate catch clause
for the outer timer. An implementation that either handles the outer timeout in the
nested code, or that waits for the longer (nested) timer, is incorrect.

Pragmatic Principles
• There should be straightforward idioms for common cases such as timer handlers

and thread termination.

• ATC must be implemented without inducing an overhead for programs that do
not use it.

• If code with a timeout completes before the timeout’s deadline, the timeout needs
to be automatically stopped and its resources returned to the system.

Asynchronous Thread Termination :
Although not a real-time issue, many event-driven computer systems that tightly
interact with external real-world noncomputer systems (e.g., humans, machines,
control processes, etc.) may require significant changes in their computational
behavior as a result of significant changes in the non-computer real-world system. It is
convenient to program threads that abnormally terminate when the external real-time
system changes in a way such that the thread is no longer useful. Consider the
opposite case. A thread or set of threads would have to be coded in such a manner so
that their computational behavior anticipated all of the possible transitions among
possible states of the external system. It is an easier design task to code threads to
computationally cooperate for only one (or a very few) possible states of the external
system. When the external system makes a state transition, the changes in
computation behavior might then be managed by an oracle, that terminates a set of
threads useful for the old state of the external system, and invokes a new set of threads

CHAPTER 2 DESIGN

14

appropriate for the new state of the external system. Since the possible state
transitions of the external system are encoded in only the oracle and not in each
thread, the overall system design is easier.

Earlier versions of the Java language supplied mechanisms for achieving these
effects: in particular the methods stop() and destroy() in class Thread. However,
since stop() could leave shared objects in an inconsistent state, stop() has been
deprecated. The use of destroy() can lead to deadlock (if a thread is destroyed while
it is holding a lock) and although it has not yet been deprecated, its usage is
discouraged. A goal of the RTSJ was to meet the requirements of asynchronous thread
termination without introducing the dangers of the stop() or destroy() methods.

The RTSJ accommodates safe asynchronous thread termination through a
combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. If the significantly long or blocking methods of a thread are
made interruptible the oracle can consist of a number of asynchronous event handlers
that are bound to external happenings. When the happenings occur the handlers can
invoke interrupt() on appropriate threads. Those threads will then clean up by
having all of the interruptible methods transfer control to appropriate catch clauses as
control enters those methods (either by invocation or by the return bytecode). This
continues until the run() method of the thread returns. This idiom provides a quick (if
coded to be so) but orderly clean up and termination of the thread. Note that the oracle
can comprise as many or as few asynchronous event handlers as appropriate.

Physical Memory Access :
The RTSJ defines classes for programmers wishing to directly access physical
memory from code. RawMemoryAccess defines methods that allow the programmer to
construct an object that represents a range of physical addresses and then access the
physical memory with byte, short, int, long, float, and double granularity. No
semantics other than the set<type>() and get<type>() methods are implied. The
VTPhysicalMemory, LTPhysicalMemory and ImmortalPhysicalMemory classes
allow programmers to create objects that represent a range of physical memory
addresses and in which Java objects can be located. The PhysicalMemoryManager is
available for use by the various physical memory accessor objects
(VTPhysicalMemory, LTPhysicalMemory, ImmortalPhysicalMemory,
RawMemoryAccess ,and RawMemoryFloatAccess) to create objects of the correct
type that are bound to areas of physical memory with the appropriate characteristics -
or with appropriate accessor behavior. Examples of characteristics that might be
specified are: DMA memory, accessors with byte swapping, etc. The base
implementation will provide a PhysicalMemoryManager and a set of
PhysicalMemoryTypeFilter classes that correctly identify memory classes that are
standard for the (OS, JVM, and processor) platform. OEMs may provide

DESIGN

15

PhysicalMemoryTypeFilter classes that allow additional characteristics of memory
devices to be specified.

Raw Memory Access
An instance of RawMemoryAccess models a range of physical memory as a fixed
sequence of bytes. A full complement of accessor methods allow the contents of the
physical area to be accessed through offsets from the base, interpreted as byte, short,
int, or long data values or as arrays of these types.

Whether the offset addresses the high-order or low-order byte is based on the
value of the BYTE_ORDER static boolean variable in class RealtimeSystem.

The RawMemoryAccess class allows a real-time program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar low-
level software.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error-
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

Physical Memory Areas
In many cases, systems needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. The VTPhysicalMemory,
LTPhysicalMemory and ImmortalPhysicalMemory classes allow the programmer
this flexibility. The programmer would construct a physical memory object on the
memory addresses occupied by the fast RAM.

Exceptions :
The RTSJ introduces several new exceptions, and some new treatment of exceptions
surrounding asynchronous transfer of control and memory allocators.

The new exceptions introduced are:

Exceptions
• AsynchronouslyInterruptedException: Generated when a thread is asynchro-

nously interrupted.

• DuplicateFilterException: PhysicalMemoryManager can only accomodate one
filter object for each type of memory. It throws this exception if an attempt is
made to register more than one filter for a type of memory.

• InaccessibleAreaException: Thrown when an attempt is made to execute or allo-

CHAPTER 2 DESIGN

16

cate from an allocation context that is not accessible on the scope stack of the cur-
rent thread.

• MITViolationException: Thrown by the fire() method of an instance of Async-
Event when the bound instance of AsyncEventHandler with a Release-
Parameter type of SporadicParameters has mitViolationExcept behavior
and the minimum interarrival time gets violated.

• MemoryScopeException: Thrown by the wait-free queue implementation when
an object is passed that is not compatible with both ends of the queue.

• MemoryTypeConflictException: Thrown when the PhysicalMemoryManager is
given conflicting specification for memory. The conflict can be between two
types in an array of memory type specifiers, or when the specified base address
does not fall in the requested memory type.

• OffsetOutOfBoundsException: Generated by the physical memory classes when
the given offset is out of bounds.

• SizeOutOfBoundsException: Generated by the physical memory classes when the
given size is out of bounds.

Runtime Exceptions
• UnsupportedPhysicalMemoryException: Generated by the physical memory

classes when the requested physical memory is unsupported.

• MemoryInUseException: Thrown when an attempt is made to allocate a range of
physical or virtual memory that is already in use.

• ScopedCycleException: Thrown when a user tries to enter a ScopedMemory that is
already accessible (ScopedMemory is present on stack) or when a user tries to cre-
ate ScopedMemory cycle spanning threads (tries to make cycle in the VM
ScopedMemory tree structure).

• UnknownHappeningException: Thrown when bindTo() is called with an illegal
happening.

Errors
• IllegalAssignmentError: Thrown on an attempt to make an illegal assignment.

• MemoryAccessError: Thrown by the JVM when a thread attempts to access
memory that is not in scope.

• ResourceLimitError: Thrown if an attempt is made to exceed a system resource
limit, such as the maximum number of locks.

• ThrowBoundaryError: A throwable tried to propagate into a scope where it was
not accessible.

DESIGN

17

Minimum Implementations of the RTSJ :
The flexibility of the RTSJ indicates that implementations may provide different
semantics for scheduling, synchronization, and garbage collection. This section
defines what minimum semantics for these areas and other semantics and APIs
required of all implementations of the RTSJ. In general, the RTSJ does not allow any
subsetting of the APIs in the javax.realtime package (except those noted as
optionally required); however, some of the classes are specific to certain well-known
scheduling or synchronization algorithms and may have no underlying support in a
minimum implementation of the RTSJ. The RTSJ provides these classes as standard
parent classes for implementations supporting such algorithms.

The minimum scheduling semantics that must be supported in all
implementations of the RTSJ are fixed-priority preemptive scheduling and at least 28
unique priority levels. By fixed-priority we mean that the system does not change the
priority of any RealtimeThread or NoHeapRealtimeThread except, temporarily, for
priority inversion avoidance. Note, however, that application code may change such
priorities. What the RTSJ precludes by this statement is scheduling algorithms that
change thread priorities according to policies for optimizing throughput (such as
increasing the priority of threads that have been receiving few processor cycles
because of higher priority threads (aging)). The 28 unique priority levels are required
to be unique to preclude implementations from using fewer priority levels of
underlying systems to implement the required 28 by simplistic algorithms (such as
lumping four RTSJ priorities into seven buckets for an underlying system that only
supports seven priority levels). It is sufficient for systems with fewer than 28 priority
levels to use more sophisticated algorithms to implement the required 28 unique
levels as long as RealtimeThreads and NoHeapRealtimeThreads behave as though
there were at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1,...,t28)
with priorities (p1,...,p28), respectively, where the value of p1 was the highest priority
and the value of p2 the next highest priority, etc., then for all executions of threads t1
through t28 thread t1 would always execute in preference to threads t2, ..., t28 and
thread t2 would always execute in preference to threads t3,..., t28, etc.)

The minimum synchronization semantics that must be supported in all
implementations of the RTSJ are detailed in the above section on synchronization and
repeated here.

All implementations of the RTSJ must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no unbounded
priority inversion. Furthermore, this must apply to code if it is run within the
implementation as well as to real-time threads. The priority inheritance protocol must
be implemented by default.

All threads waiting to acquire a resource must be queued in priority order. This
applies to the processor as well as to synchronized blocks. If threads with the same
exact priority are possible under the active scheduling policy, threads with the same

CHAPTER 2 DESIGN

18

priority are queued in FIFO order. (Note that these requirements apply only to the
required base scheduling policy and hence use the specific term “priority”). In
particular:

• Threads waiting to enter synchronized blocks are granted access to the synchro-
nized block in priority order.

• A blocked thread that becomes ready to run is given access to the processor in
priority order.

• A thread whose execution eligibility is explicitly set by itself or another thread is
given access to the processor in priority order.

• A thread that performs a yield() will be given access to the processor after wait-
ing threads of the same priority.

• However, threads that are preempted in favor of a thread with higher priority may
be given access to the processor at any time as determined by a particular imple-
mentation. The implementation is required to provide documentation stating
exactly the algorithm used for granting such access.

The RTSJ does not require any particular garbage collection algorithm. All
implementations of the RTSJ must, however, support the class GarbageCollector
and implement all of its methods.

Optionally Required Components :
The RTSJ does not, in general, support the concept of optional components of the
specification. Optional components would further complicate the already difficult
task of writing WORA (Write Once Run Anywhere) software components for real-
time systems. However, understanding the difficulty of providing implementations of
mechanisms for which there is no underlying support, the RTSJ does provide for a
few exceptions. Any components that are considered optional will be listed as such in
the class definitions.

The most notable optional component of the specification is the
POSIXSignalHandler. A conformant implementation must support POSIX signals if
and only if the underlying system supports them. Also, the class
RawMemoryFloatAccess is required to be implemented if and only if the JVM itself
supports floating point types.

Documentation Requirements :
In order to properly engineer a real-time system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. (An example of this is the maximum expected latency before the
garbage collector can be interrupted.)

DESIGN

19

The RTSJ does not require specific performance or latency numbers to be
matched. Rather, to be conformant to this specification, an implementation must
provide documentation regarding the expected behavior of particular mechanisms.
The mechanisms requiring such documentation, and the specific data to be provided,
will be detailed in the class and method definitions.

Parameter Objects :
A number of constructors in this specification take objects generically named
feasibility parameters (classes named <string>Parameters where <string>
identifies the kind of parameter). When a reference to a Parameters object is given as
a parameter to a constructor the Parameters object becomes bound to the object
being created. Changes to the values in the Parameters object affect the constructed
object. For example, if a reference to a SchedulingParameters object, sp, is given to
the constructor of a RealtimeThread, rt, then calls to sp.setPriority() will
change the priority of rt. There is no restriction on the number of constructors to
which a reference to a single Parameters object may be given. If a Parameters
object is given to more than one constructor, then changes to the values in the
Parameters object affect all of the associated schedulable objects. Note that this is a
one-to-many relationship, not a many-to-many relationship, that is, a schedulable
object (e.g., an instance of RealtimeThread) must have zero or one associated
instance of each Parameter object type.

Caution: <string>Parameter objects are explicitly unsafe in multithreaded
situations when they are being changed. No synchronization is done. It is assumed
that users of this class who are mutating instances will be doing their own
synchronization at a higher level.

Java Platform Dependencies :
In some cases the classes and methods defined in this specification are dependent on
the underlying Java platform.

1. The Comparable interface is available in Java" 2 v1.2 1nd 1.3 and not in what
was formally known as JDK’s 1.0 and 1.1. Thus, we expect implementations of
this specification which are based on JDK’s 1.0 or 1.1 to include a Comparable
interface.

2. The class RawMemoryFloatAccess is required if and only if the underlying Java
Virtual Machine supports floating point data types.

Illegal Parameter Values :
Except as noted explicitly in the descriptions of constructors, methods, and
parameters an instance of IllegalArgumentException will be thrown if the value of the
parameter or of a field of an instance of an object given as a parameter is as given in
the following table:

CHAPTER 2 DESIGN

20

Explicit exceptions to these semantics may also be global at the Chapter, Class, or
Method level.

Type Value

Object null

type[] null

String Null

int less than zero

long less than zero

float less than zero

boolean N/A

Class null

21

C h a p t e r 3
Threads

This section contains classes that:

• Provide for the creation of threads that have more precise scheduling semantics
than java.lang.Thread.

• Allow the use of areas of memory other than the heap for the allocation of
objects.

• Allow the definition of methods that can be asynchronously interrupted.

• Provide the scheduling semantics for handling asynchronous events.

The RealtimeThread class extends java.lang.Thread. The ReleaseParameters,
SchedulingParameters, and MemoryParameters provided to the RealtimeThread
constructor allow the temporal and processor demands of the thread to be
communicated to the system.

The NoHeapRealtimeThread class extends RealtimeThread. A
NoHeapRealtimeThread is not allowed to allocate or even reference objects from the
Java heap, and can thus safely execute in preference to the garbage collector.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

CHAPTER 3 THREADS

22

1. The default scheduling policy must manage the execution of instances of Object
that implement the interface Schedulable.

2. Any scheduling policy present in an implementation must be available to
instances of objects which implement the interface Schedulable.

3. The function of allocating objects in memory in areas defined by instances of
ScopedMemory or its subclasses shall be available only to logic within instances
of RealtimeThread, NoHeapRealtimeThread, AsyncEventHandler, and
BoundAsyncEventHandler.

4. The invocation of methods that throw AsynchronouslyInterruptedException
has the indicated effect only when the invocation occurs in the context of
instances of RealtimeThread, NoHeapRealtimeThread, AsyncEventHandler,
and BoundAsyncEventHandler.

5. Instances of the NoHeapRealtimeThread class have an implicit execution eligi-
bility logically higher than any garbage collector.

6. In the specific case in which an instance of NoHeapRealtimeThread and an
instance of either RealtimeThread or Thread synchronize on the same object the
following exception to the immediately previous statement applies. Although by
virtue of either the default priority inheritance algorithm or other priority inver-
sion avoidance algorithm the temporary execution priority of either the instance
of RealtimeThread or Thread may be raised to that of the instance of NoHeap-
RealtimeThread this temporary execution priority will not cause the instance of
RealtimeThread or Thread to execute in preference of or to interrupt any gar-
bage collector. This exception has the effect of causing an instance of NoHeap-
RealtimeThread to wait for the garbage collector. However, two observations
should be noted. Since the instance NoHeapRealtimeThread is synchronizing
with a thread that may be blocked by the execution of the garbage collector it
should expect to be blocked as well. The alternative, allowing an instance of
either RealtimeThread or Thread to preempt the garbage collector, can easily
cause a complete system failure.

7. Instances of the RealtimeThread class may have an execution eligibility logi-
cally lower than the garbage collector.

8. Changing values in SchedulingParameters, ProcessingParameters,
ReleaseParameters, ProcessingGroupParameters, or use of Thread.set-
Priority() must not affect the correctness of any implemented priority inver-
sion avoidance algorithm.

9. Instances of objects which implement the interface Schedulable will inherit the
scope stack (see the Memory Chapter) of the thread invoking the constructor. If
the thread invoking the constructor does not have a scope stack then the scope
stack of the new object will have one entry which will be the current allocation

RATIONALE

23

context of the thread invoking the constructor.

10. Instances of objects which implement the interface Schedulable will have an ini-
tial entry in their scope stack. This entry will be either: the memory area given as
a parameter to the constructor, or, if no memory area is given, the allocation con-
text of the thread invoking the constructor.

11. The default parameter values for an object implmenting the interface Schedula-
ble will be the parameter values of the thread invoking the constructor. If the
thread invoking the constructor does not have parameter values then the default
values are those values associated with the instance of Scheduler which will
manage the object.

12. Instance of objects implementing the interface Schedulable can be placed in
memory represented by instances of ImmortalMemory, HeapMemory,
LTPhysicalMemory, VTPhysicalMemory, or ImmortalPhysicalMemory.

Rationale

The Java platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial real-time operating systems.
However, the dispatching semantics were purposefully relaxed in order to allow
execution on a wide variety of operating systems. Thus, it is appropriate to specify
real-time threads by merely extending java.lang.Thread. The
RealtimeParameters and MemoryParameters provided to the RealtimeThread
constructor allow for a number of common real-time thread types, including periodic
threads.

The NoHeapRealtimeThread class is provided in order to allow time-critical
threads to execute in preference to the garbage collector. The memory access and
assignment semantics of the NoHeapRealtimeThread are designed to guarantee that
the execution of such threads does not lead to an inconsistent heap state.

3.1 RealtimeThread

Declaration :
public class RealtimeThread extends java.lang.Thread

implements Schedulable41

All Implemented Interfaces: java.lang.Runnable, Schedulable41

Direct Known Subclasses: NoHeapRealtimeThread33

CHAPTER 3 THREADS

24

Description :
RealtimeThread extends java.lang.Thread and includes classes and methods to
get and set parameter objects, manage the execution of those threads with a
ReleaseParameters54 type of PeriodicParameters57 , and waiting.

A RealtimeThreadobject must be placed in a memory area such that thread logic
may unexceptionally access instance variables and such that Java methods on
java.lang.Thread (e.g., enumerate and join) complete normally except where such
execution would cause access violations.

Parameters for constructors may be null. In such cases the default value will be
the default value set for the particular type by the associated instance of
Scheduler45 .

3.1.1 Constructors

public RealtimeThread()
Create a real-time thread. All parameter values are null.

public RealtimeThread(SchedulingParameters51 scheduling)
Create a real-time thread with the given SchedulingParameters51 .

Parameters:
scheduling - The SchedulingParameters51 associated with this

(and possibly other RealtimeThread).

public RealtimeThread(SchedulingParameters51 scheduling,
ReleaseParameters54 release)

Create a real-time thread with the given SchedulingParameters51 and
ReleaseParameters54 .

Parameters:
scheduling - The SchedulingParameters51 associated with this

(and possibly other instances of RealtimeThread).

release - The ReleaseParameters54 associated with this (and
possibly other instances of RealtimeThread).

public RealtimeThread(SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memory,
MemoryArea77 area,

REALTIMETHREAD

25

ProcessingGroupParameters67 group,
java.lang.Runnable logic)

Create a real-time thread with the given characteristics and a
java.lang.Runnable .

Parameters:
scheduling - The SchedulingParameters51 associated with this

(and possibly other instances of RealtimeThread).

release - The ReleaseParameters54 associated with this (and
possibly other instances of RealtimeThread).

memory - The MemoryParameters129 associated with this (and
possibly other instances of RealtimeThread).

area - The MemoryArea77 associated with this.

group - The ProcessingGroupParameters67 associated with this
(and possibly other instances of RealtimeThread).

3.1.2 Methods

public boolean addIfFeasible()
Add to the feasibility of the already set scheduler if the resulting feasibility
set is schedulable. If successful return true, if not return false. If there is not
an assigned scheduler it will return false

public boolean addToFeasibility()
Inform the scheduler and cooperating facilities that the resource demands
(as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67) of this instance of Schedulable41
will be considered in the feasibility analysis of the associated
Scheduler45 until further notice. Whether the resulting system is feasible
or not, the addition is completed.

Specified By: public boolean addToFeasibility()41 in interface
Schedulable41

Returns: true If the resulting system is feasible.

public static RealtimeThread23 currentRealtimeThread()
throws ClassCastException

CHAPTER 3 THREADS

26

This will throw a ClassCastException if the current thread is not a
RealtimeThread.

Throws:
ClassCastException

public void deschedulePeriodic()
Stop unblocking public boolean waitForNextPeriod()
throws IllegalThreadStateException33 for a periodic schedulable
object. If this does not have a type of PeriodicParameters57 as it
ReleaseParameters54 nothing happens.

public static MemoryArea77 getCurrentMemoryArea()
Return the instance of MemoryArea77 which is the current memory area
for this.

public static int getInitialMemoryAreaIndex()
Memory area stacks include inherited stacks from parent threads. The inital
memory area for the current RealtimeThread is the memory area given as
a parameter to the constructor. This method returns the position in the
memory area stack of that initial memory area.

Returns: The index into the memory area stack of the inital memory area of
the current RealtimeThread

public static int getMemoryAreaStackDepth()
Get the size of the stack of MemoryArea77 instances to which this
RealtimeThread has access.

Returns: The size of the stack of MemoryArea77 instances.

public MemoryParameters129 getMemoryParameters()
Return a reference to the MemoryParameters129 object.

Specified By: public MemoryParameters129
getMemoryParameters()42 in interface Schedulable41

public static MemoryArea77 getOuterMemoryArea(int index)

REALTIMETHREAD

27

Get the instance of MemoryArea77 in the memory area stack at the index
given. If the given index does not exist in the memory area scope stack
then null is returned.

Parameters:
index - The offset into the memory area stack.

Returns: The instance of MemoryArea77 at index or null if the given
value is does not correspond to a position in the stack.

public ProcessingGroupParameters67
getProcessingGroupParameters()

Return a reference to the ProcessingGroupParameters67 object.

Specified By: public ProcessingGroupParameters67
getProcessingGroupParameters()42 in interface
Schedulable41

public ReleaseParameters54 getReleaseParameters()
Returns a reference to the ReleaseParameters54 object.

Specified By: public ReleaseParameters54
getReleaseParameters()42 in interface Schedulable41

public Scheduler45 getScheduler()
Get the scheduler for this thread.

Specified By: public Scheduler45 getScheduler()42 in interface
Schedulable41

public SchedulingParameters51 getSchedulingParameters()
Return a reference to the SchedulingParameters51 object.

Specified By: public SchedulingParameters51
getSchedulingParameters()42 in interface Schedulable41

public void interrupt()
Throw the generic AsynchronouslyInterruptedException198 at this.

Overrides: java.lang.Thread.interrupt() in class java.lang.Thread

public boolean removeFromFeasibility()

CHAPTER 3 THREADS

28

Inform the scheduler and cooperating facilities that the resource demands,
as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67 , of this instance of Schedulable41
should no longer be considered in the feasibility analysis of the associated
Scheduler45 . Whether the resulting system is feasible or not, the subtrac-
tion is completed.

Specified By: public boolean removeFromFeasibility()42 in
interface Schedulable41

Returns: true If the resulting system is feasible.

public void schedulePeriodic()
Begin unblocking public boolean waitForNextPeriod()
throws IllegalThreadStateException33 for a periodic thread. Typi-
cally used when a periodic schedulable object is in an overrun condition.
The scheduler should recompute the schedule and perform admission con-
trol. If this does not have a type of PeriodicParameters57 as it
ReleaseParameters54 nothing happens.

public boolean setIfFeasible(ReleaseParameters54 release,
MemoryParameters129 memory)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public boolean setIfFeasible(ReleaseParameters54 release,
MemoryParameters129 memory,
ProcessingGroupParameters67 group)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public boolean setIfFeasible(ReleaseParameters54 release,
ProcessingGroupParameters67 group)

REALTIMETHREAD

29

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public void setMemoryParameters(MemoryParameters129
parameters)
throws IllegalThreadStateException

Set the reference to the MemoryParameters129 object.

Specified By: public void
setMemoryParameters(MemoryParameters129 memory)42
in interface Schedulable41

Throws:
IllegalThreadStateException

public boolean
setMemoryParametersIfFeasible(MemoryParamet
ers129 memParam)

Returns true if, after considering the value of the parameter, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the value of the parameter, the
task set would not be feasible. In this case the values of the parameters are
not changed.

Specified By: public boolean
setMemoryParametersIfFeasible(MemoryParameters129
memParam)43 in interface Schedulable41

public void
setProcessingGroupParameters(ProcessingGrou
pParameters67 parameters)

Set the reference to the ProcessingGroupParameters67 object.

Specified By: public void
setProcessingGroupParameters(ProcessingGroupPara
meters67 groupParameters)43 in interface Schedulable41

public boolean
setProcessingGroupParametersIfFeasible(Pro

CHAPTER 3 THREADS

30

cessingGroupParameters67 groupParameters)
Returns true if, after considering the value of the parameter, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the value of the parameter, the
task set would not be feasible. In this case the values of the parameters are
not changed.

Specified By: public boolean
setProcessingGroupParametersIfFeasible(Processin
gGroupParameters67 groupParameters)43 in interface
Schedulable41

public void setReleaseParameters(ReleaseParameters54
parameters)
throws IllegalThreadStateException

Set the reference to the ReleaseParameters54 object.

Specified By: public void
setReleaseParameters(ReleaseParameters54
release)43 in interface Schedulable41

Throws:
IllegalThreadStateException

public boolean
setReleaseParametersIfFeasible(ReleaseParam
eters54 release)

Returns true if, after considering the value of the parameter, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the value of the parameter, the
task set would not be feasible. In this case the values of the parameters are
not changed.

Specified By: public boolean
setReleaseParametersIfFeasible(ReleaseParameters
54 release)43 in interface Schedulable41

public void setScheduler(Scheduler45 scheduler)
throws IllegalThreadStateException

Set the scheduler. This is a reference to the scheduler that will manage the
execution of this thread.

REALTIMETHREAD

31

Specified By: public void setScheduler(Scheduler45 scheduler)
throws IllegalThreadStateException44 in interface
Schedulable41

Throws:
IllegalThreadStateException - Thrown when

((Thread.isAlive() && Not Blocked) == true). (Where
blocked means waiting in Thread.wait(), Thread.join(),
or Thread.sleep())

public void setScheduler(Scheduler45 scheduler,
SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memoryParameters,
ProcessingGroupParameters67 processingGroup)
throws IllegalThreadStateException

Set the scheduler. This is a reference to the scheduler that will manage the
execution of this thread.

Specified By: public void setScheduler(Scheduler45 scheduler,
SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memoryParameters,
ProcessingGroupParameters67 processingGroup)
throws IllegalThreadStateException44 in interface
Schedulable41

Throws:
IllegalThreadStateException - Thrown when

((Thread.isAlive() && Not Blocked) == true). (Where
blocked means waiting in Thread.wait(), Thread.join(),
or Thread.sleep())

public void setSchedulingParameters(SchedulingParameters51
scheduling)
throws IllegalThreadStateException

Set the reference to the SchedulingParameters51 object.

Specified By: public void
setSchedulingParameters(SchedulingParameters51
scheduling)44 in interface Schedulable41

Throws:
IllegalThreadStateException

CHAPTER 3 THREADS

32

public boolean
setSchedulingParametersIfFeasible(Scheduli
ngParameters51 scheduling)

Returns true if, after considering the value of the parameter, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the value of the parameter, the
task set would not be feasible. In this case the values of the parameters are
not changed.

Specified By: public boolean
setSchedulingParametersIfFeasible(SchedulingPara
meters51 scheduling)44 in interface Schedulable41

public static void sleep(Clock166 clock,
HighResolutionTime148 time)
throws InterruptedException

An accurate timer with nanosecond granularity. The actual resolution avail-
able for the clock must be queried from somewhere else. The time base is
the given Clock166 . The sleep time may be relative or absolute. If relative,
then the calling thread is blocked for the amount of time given by the
parameter. If absolute, then the calling thread is blocked until the indicated
point in time. If the given absolute time is before the current time, the call
to sleep returns immediately.

Throws:
InterruptedException

public static void sleep(HighResolutionTime148 time)
throws InterruptedException

An accurate timer with nanosecond granularity. The actual resolution avail-
able for the clock must be queried from somewhere else. The time base is
the default Clock166 . The sleep time may be relative or absolute. If rela-
tive, then the calling thread is blocked for the amount of time given by the
parameter. If absolute, then the calling thread is blocked until the indicated
point in time. If the given absolute time is before the current time, the call
to sleep returns immediately.

Throws:
InterruptedException

public void start()

NOHEAPREALTIMETHREAD

33

Checks if the instance of RealtimeThread is startable and starts it if it is.

Overrides: java.lang.Thread.start() in class java.lang.Thread

public boolean waitForNextPeriod()
throws IllegalThreadStateException

Used by threads that have a reference to a ReleaseParameters54 type of
PeriodicParameters57 to block until the start of each period. Periods
start at either the start time in PeriodicParameters57 or when
this.start() is called. This method will block until the start of the next
period unless the thread is in either an overrun or deadline miss condition.
If both overrun and miss handlers are null and the thread has overrun its
cost or missed a deadline public boolean waitForNextPeriod()
throws IllegalThreadStateException33 will immediately return
false once per overrun or deadline miss. It will then again block until the
start of the next period (unless, of course, the thread has overrun or missed
again). If either the overrun or deadline miss handlers are not null and the
thread is in either an overrun or deadline miss condition public boolean
waitForNextPeriod() throws IllegalThreadStateException33
will block until the handler corrects the situation (possibly by calling pub-
lic void schedulePeriodic()28). public boolean waitForNex-
tPeriod() throws IllegalThreadStateException33 throws
IllegalThreadStateException if this does not have a reference to a
ReleaseParameters54 type of PeriodicParameters57 .

Returns: True when the thread is not in an overrun or deadline miss
condition and unblocks at the start of the next period.

Throws:
IllegalThreadStateException

3.2 NoHeapRealtimeThread

Declaration :
public class NoHeapRealtimeThread extends RealtimeThread23

All Implemented Interfaces: java.lang.Runnable, Schedulable41

Description :
A NoHeapRealtimeThread is a specialized form of RealtimeThread23 . Because an
instance of NoHeapRealtimeThread may immediately preempt any implemented
garbage collector logic contained in its run() is never allowed to allocate or reference
any object allocated in the heap nor is it even allowed to manipulate any reference to

CHAPTER 3 THREADS

34

any object in the heap. For example, if a and b are objects in immortal memory, b.p is
reference to an object on the heap, and a.p is type compatible with b.p, then a
NoHeapRealtimeThread is not allowed to execute anything like the following:

a.p = b.p; b.p = null;
Thus, it is always safe for a NoHeapRealtimeThread to interrupt the garbage

collector at any time, without waiting for the end of the garbage collection cycle or a
defined preemption point. Due to these restrictions, a NoHeapRealtimeThread object
must be placed in a memory area such that thread logic may unexceptionally access
instance variables and such that Java methods on java.lang.Thread (e.g.,
enumerate and join) complete normally except where execution would cause access
violations. The constructors of NoHeapRealtimeThread require a reference to
ScopedMemory84 or ImmortalMemory82 .

When the thread is started, all execution occurs in the scope of the given memory
area. Thus, all memory allocation performed with the “new” operator is taken from
this given area.

Parameters for constructors may be null. In such cases the default value will be
the default value set for the particular type by the associated instance of
Scheduler45 .

3.2.1 Constructors

public NoHeapRealtimeThread(SchedulingParameters51 sp,
MemoryArea77 ma)
throws IllegalArgumentException

Create a NoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParameters51 object that will be

associated with this. A null value means this will not have an
associated SchedulingParameters51 object.

area - A MemoryArea77 object. Must be a ScopedMemory84 or
ImmortalMemory82 type. A null value causes an
IllegalArgumentException to be thrown.

Throws:
IllegalArgumentException

public NoHeapRealtimeThread(SchedulingParameters51 sp,
ReleaseParameters54 rp, MemoryArea77 ma)
throws IllegalArgumentException

NOHEAPREALTIMETHREAD

35

Create a NoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParameters51 object that will be

associated with this. A null value means this will not have an
associated SchedulingParameters51 object.

release - A ReleaseParameters54 object that will be associated
with this. A null value means this will not have an associated
ReleaseParameters54 object.

area - A MemoryArea77 object. Must be a ScopedMemory84 or
ImmortalMemory82 type. A null value causes an
IllegalArgumentException to be thrown.

Throws:
IllegalArgumentException

public NoHeapRealtimeThread(SchedulingParameters51 sp,
ReleaseParameters54 rp,
MemoryParameters129 mp, MemoryArea77 ma,
ProcessingGroupParameters67 group,
java.lang.Runnable logic)
throws IllegalArgumentException

Create a NoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParameters51 object that will be

associated with this. A null value means this will not have an
associated SchedulingParameters51 object.

release - A ReleaseParameters54 object that will be associated
with this. A null value means this will not have an associated
ReleaseParameters54 object.

memory - A MemoryParameters129 object that will be associated
with this. A null value means this will not have a
MemoryParameters129 object.

area - A MemoryArea77 object. Must be a ScopedMemory84 or
ImmortalMemory82 type. A null value causes an
IllegalArgumentException to be thrown.

group - A ProcessingGroupParameters67 object that will be
associated with this. A null value means this will not have an
associated ProcessingGroupParameters67 object.

logic - A Runnable whose run() method will be executed for this.

CHAPTER 3 THREADS

36

Throws:
IllegalArgumentException

3.2.2 Methods

public void start()
Checks if the NoHeapRealtimeThread is startable and starts it if it is.
Checks that the parameters associated with this NHRT object are not allo-
cated in heap. Also checks if this object is allocated in heap. If any of
them are allocated, start() throws a MemoryAccessError221

Overrides: public void start()32 in class RealtimeThread23

Throws:
MemoryAccessError221 - If any of the parameters or this is

allocated on heap.

SCHEDULING

37

C h a p t e r 4
Scheduling

This section contains classes that:

• Allow the definition of schedulable objects.

• Manage the assignment of execution eligibility to schedulable objects.

• Perform feasibility analysis for sets of schedulable objects.

• Control the admission of new schedulable objects.

• Manage the execution of instances of the AsyncEventHandler and Realtime-
Thread classes.

• Assign release characteristics to schedulable objects.

• Assign execution eligibility values to schedulable objects.

• Define temporal containers used to enforce correct temporal behavior of multiple
schedulable objects.

The scheduler required by this specification is fixed-priority preemptive with 28
unique priority levels. It is represented by the class PriorityScheduler and is called
the base scheduler.

The schedulable objects required by this specification are defined by the classes
RealtimeThread, NoHeapRealtimeThread, and AsyncEventHandler. Each of these
is assigned processor resources according to their release characteristics, execution
eligibility, and processing group values. Any subclass of these objects or any class
implementing the Schedulable interface are schedulable objects and behave as these
required classes.

CHAPTER 4 SCHEDULING

38

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable object is considered to have the execution eligibility in the
SchedulingParameters object used in the constructor of the schedulable object. For
implementations providing only the base scheduling policy, the previous statement
holds for the specific type PriorityParameters (a subclass of
SchedulingParameters), Implementations providing additional scheduling policies
or execution eligibility assignment policies which require an application visible field
to contain execution eligibility then SchedulingParamters must be subclassed and
the previous statement then holds for the specific subclass type. If, however,
additionally provided scheduling policies or execution eligibility assignment policies
do not require application visibility of execution eligibility or it appears in another
parameter object (e.g., the earliest deadline first scheduling uses deadline as the
execution eligibility metric and would thus be visible in ReleaseParameters), then
SchedulingParameters need not be subclassed.

An instance of the ReleaseParameters class or its subclasses,
PeriodicParameters, AperiodicParameters, and SporadicParameters, contains
values that define a particular release discipline. A schedulable object is considered to
have the release characteristics of a single associated instance of the
ReleaseParameters class. In all cases the Scheduler uses these values to perform
its feasibility analysis over the set of schedulable objects and admission control for
the schedulable object. Additionally, for those schedulable objects whose associated
instance of ReleaseParameters is an instance of PeriodicParameters, the
scheduler manages the behavior of the object’s waitForNextPeriod() method and
monitors overrun and deadline-miss conditions. In the case of overrun or deadline-
miss the scheduler changed the behavior of the waitForNextPeriod()and schedules
the appropriate handler.

An instance of the ProcessingGroupParameters class contains values that
define a temporal scope for a processing group. If a schedulable object has an
associated instance of the ProcessingGroupParameters class, it is said to execute
within the temporal scope defined by that instance. A single instance of the
ProcessingGroupParameters class can be (and typically is) associated with many
schedulable objects. The combined processor demand of all of the schedulable objects
associated with an instance of the ProcessingParameters class must not exceed the
values in that instance (i.e., the defined temporal scope). The processor demand is
determined by the Scheduler.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section and the required scheduling algorithm. Semantics that apply to

SEMANTICS AND REQUIREMENTS

39

particular classes, constructors, methods, and fields will be found in the class
description and the constructor, method, and field detail sections.

1. The base scheduler must support at least 28 unique values in the priorityLevel
field of an instance of PriorityParameters.

2. Higher values in the priorityLevel field of an instance of Priority-
Parameters have a higher execution eligibility.

3. In (1) unique means that if two schedulable objects have different values in the
priorityLevel field in their respective instances of PriorityParameters, the
schedulable object with the higher value will always execute in preference to the
schedulable object with the lower value when both are ready to execute.

4. An implementation must make available some native priorities which are lower
than the 28 required real-time priorities. These are to be used for regular Java
threads (i.e., instances of threads which are not instances of RealtimeThread,
NoHeapRealtimeThread, or AsyncEventHandler classes or subclasses). The ten
traditional Java thread priorities may have an arbitrary mapping into the native
priorities. These ten traditional Java thead priorities and the required minimum 28
unique real-time thread priorities shall be from the same space. Assignment of
any of these (minimum) 38 priorities to real-time threads or traditional Java
threads is legal. It is the responsibility of application logic to make rational prior-
ity assignments.

5. The dispatching mechanism must allow the preemption of the execution of sched-
ulable objects at a point not governed by the preempted object.

6. For schedulable objects managed by the base scheduler no part of the system may
change the execution eligibility for any reason other than implementation of a pri-
ority inversion algorithm. This does not preclude additional schedulers from
changing the execution eligibility of schedulable objects—-which they manage—
-according to the scheduling algorithm.

7. Threads that are preempted in favor of a higher priority thread may be placed in
the appropriate queue at any position as determined by a particular implementa-
tion. The implementation is required to provide documentation stating exactly the
algorithm used for such placement.

8. If an implementation provides any schedulers other than the base scheduler it
shall provide documentation explicitly stating the semantics expressed by 8
through 11 in language and constructs appropriate to the provided scheduling
algorithms.

9. All instances of RelativeTime used in instances of ProcessingParameters,
SchedulingParameters, and ReleaseParameters are measured from the time
at which the associated thread (or first such thread) is started.

CHAPTER 4 SCHEDULING

40

10. PriorityScheduler.getNormPriority() shall be set to ((Priority-
Scheduler.getMaxPriority() - PriorityScheduler.getMinPriority())/
3) + PriorityScheduler.getMinPriority().

11. If instances of RealtimeThread or NoHeapRealtimeThread are constructed
without a reference to a SchedulingParameters object a SchedulingParamters
object is created and assigned the values of the current thread. This does not
imply that other schedulers should follow this rule. Other schedulers are free to
define the default scheduling parameters in the absence of a given Scheduling-
Parameters object.

12. The policy and semantics embodied in 1 through 11 above and by the descriptions
of the refered to classes, methods, and their interactions must be available in all
implementations of this specification.

13. This specification does not require any particular feasibility algorithm be imple-
mented in the Scheduler object. Those implementations that choose to not
implement a feasibility algorithm shall return success whenever the feasibility
algorithm is executed.

14. Implementations that provide a scheduler with a feasibility algorithm are required
to clearly document the behavior of that algorithm.

15. For instances of AsyncEventHandler with a release parameters object of type
SporadicParameters implementations are required to maintain a list of times at
which instances of AsyncEvent occurred. The ith time may be removed from the
queue after the ith execution of the handleAsyncEvent method.

16. If the instance of AsyncEvent has more than one instance of AsyncEvent-
Handler with release parameters objects of type SporadicParameters attached
and the execution of AsyncEvent.fire() introduces the requirement to throw at
least one type of exception, then all instance of AsyncEventHandler not affected
by the exception are handled normally.

17. If the instance of AsyncEvent has more than one instance of AsyncEvent-
Handler with release parameters objects of type SporadicParameters attached
and the execution of AsyncEvent.fire() introduces the simultaneous require-
ment to throw more than one type of exception or error then MITViolation-
Exception has precedence over ResourceLimitExceeded.

The following hold for the PriorityScheduler:

1. A blocked thread that becomes ready to run is added to the tail of any runnable
queue for that priority.

2. For a thread whose effective priority is changed as a result of explicitly setting
priorityLevel this thread or another thread is added to the tail of the runnable
queue for the new priorityLevel.

RATIONALE

41

3. A thread that performs a yield() goes to the tail of the runnable queue for its
priorityLevel.

Rationale

As specified the required semantics and requirements of this section establish a
scheduling policy that is very similar to the scheduling policies found on the vast
majority of real-time operating systems and kernels in commercial use today. By
requirement 16, the specification accommodates existing practice, which is a stated
goal of the effort.

The semantics of the classes, constructors, methods, and fields within allow for
the natural extension of the scheduling policy by implementations that provide
different scheduler objects.

Some research shows that, given a set of reasonable common assumptions, 32
unique priority levels are a reasonable choice for close-to-optimal scheduling
efficiency when using the rate-monotonic priority assignment algorithm (256 priority
levels better provide better efficiency). This specification requires at least 28 unique
priority levels as a compromise noting that implementations of this specification will
exist on systems with logic executing outside of the Java Virtual Machine and may
need priorities above, below, or both for system activities.

4.1 Schedulable

Declaration :
public interface Schedulable extends java.lang.Runnable

All Superinterfaces: java.lang.Runnable

All Known Implementing Classes: AsyncEventHandler183, RealtimeThread23

Description :
Handlers and other objects can be run by a Scheduler45 if they provide a run()
method and the methods defined below. The Scheduler45 uses this information to
create a suitable context to execute the run() method.

4.1.1 Methods

public boolean addToFeasibility()

CHAPTER 4 SCHEDULING

42

Inform the scheduler and cooperating facilities that the resource demands
(as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67) of this instance of Schedulable41
will be considered in the feasibility analysis of the associated
Scheduler45 until further notice. Whether the resulting system is feasible
or not, the addition is completed.

Returns: true If the resulting system is feasible.

public MemoryParameters129 getMemoryParameters()
Return the MemoryParameters129 of this schedulable object.

public ProcessingGroupParameters67
getProcessingGroupParameters()

Return the ProcessingGroupParameters67 of this schedulable object.

public ReleaseParameters54 getReleaseParameters()
Return the ReleaseParameters54 of this schedulable object.

public Scheduler45 getScheduler()
Return the Scheduler45 for this schedulable object.

public SchedulingParameters51 getSchedulingParameters()
Return the SchedulingParameters51 of this schedulable object.

public boolean removeFromFeasibility()
Inform the scheduler and cooperating facilities that the resource demands,
as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67 , of this instance of Schedulable41
should no longer be considered in the feasibility analysis of the associated
Scheduler45 . Whether the resulting system is feasible or not, the subtrac-
tion is completed.

Returns: true If the resulting system is feasible.

public void setMemoryParameters(MemoryParameters129 memory)

SCHEDULABLE

43

Set the MemoryParameters129 of this schedulable object.

Parameters:
memory - The MemoryParameters129 object.

public boolean
setMemoryParametersIfFeasible(MemoryParamet
ers129 memParam)

Set the MemoryParameters129 of this schedulable object.

Parameters:
memory - The MemoryParameters129 object. If null nothing

happens.

public void
setProcessingGroupParameters(ProcessingGrou
pParameters67 groupParameters)

Set the ProcessingGroupParameters67 of this schedulable object.

Parameters:
groupParameters - The ProcessingGroupParameters67 object.

public boolean
setProcessingGroupParametersIfFeasible(Pro
cessingGroupParameters67 groupParameters)

Set the ProcessingGroupParameters67 of this schedulable object only
if the resulting task set is feasible.

Parameters:
groupParameters - The ProcessingGroupParameters67 object.

public void setReleaseParameters(ReleaseParameters54
release)

Set the ReleaseParameters54 for this schedulable object.

Parameters:
release - The ReleaseParameters54 object.

public boolean
setReleaseParametersIfFeasible(ReleaseParam
eters54 release)

CHAPTER 4 SCHEDULING

44

Set the ReleaseParameters54 for this schedulable object only if the
resulting task set is feasible.

Parameters:
release - The ReleaseParameters54 object. If null nothing

happens.

public void setScheduler(Scheduler45 scheduler)
throws IllegalThreadStateException

Set the Scheduler45 for this schedulable object.

Parameters:
scheduler - The Scheduler45 object.

Throws:
IllegalThreadStateException

public void setScheduler(Scheduler45 scheduler,
SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memoryParameters,
ProcessingGroupParameters67 processingGroup)
throws IllegalThreadStateException

Set the Scheduler45 for this schedulable object.

Parameters:
scheduler - The Scheduler45 object.

Throws:
IllegalThreadStateException

public void setSchedulingParameters(SchedulingParameters51
scheduling)

Set the SchedulingParameters51 of this scheduable object.

Parameters:
scheduling - The SchedulingParameters51 object.

public boolean
setSchedulingParametersIfFeasible(Scheduli
ngParameters51 scheduling)

Set the SchedulingParameters51 of this schedulable object only if the
resulting task set is feasible.

SCHEDULER

45

Parameters:
scheduling - The SchedulingParameters51 object. If null

nothing happens.

4.2 Scheduler

Declaration :
public abstract class Scheduler

Direct Known Subclasses: PriorityScheduler47

Description :
An instance of Scheduler manages the execution of schedulable objects and may
implement a feasibility algorithm. The feasibility algorithm may determine if the
known set of schedulable objects, given their particular execution ordering (or priority
assignment), is a feasible schedule. Subclasses of Scheduler are used for alternative
scheduling policies and should define an instance() class method to return the
default instance of the subclass. The name of the subclass should be descriptive of the
policy, allowing applications to deduce the policy available for the scheduler obtained
via public static Scheduler45 getDefaultScheduler()46 (e.g.,
EDFScheduler).

4.2.1 Constructors

protected Scheduler()
Constructor.

4.2.2 Methods

protected abstract boolean addToFeasibility(Schedulable41
schedulable)

Inform the scheduler and cooperating facilities that the resource demands
(as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67) of this instance of Schedulable41
will be considered in the feasibility analysis of the associated
Scheduler45 until further notice. Whether the resulting system is feasible
or not, the addition is completed.

Returns: true If the resulting system is feasible.

CHAPTER 4 SCHEDULING

46

public abstract void fireSchedulable(Schedulable41
schedulable)

Trigger the execution of a schedulable object (like an
AsyncEventHandler183).

Parameters:
schedulable - The schedulable object to make active.

public static Scheduler45 getDefaultScheduler()
Return a reference to the default scheduler.

public abstract java.lang.String getPolicyName()
Used to determine the policy of the Scheduler.

Returns: A String object which is the name of the scheduling policy used
by this.

public abstract boolean isFeasible()
Returns true if and only if the system is able to satisfy the constraints
expressed in the release parameters of the existing schedulable objects.

protected abstract boolean
removeFromFeasibility(Schedulable41
schedulable)

Inform the scheduler and cooperating facilities that the resource demands,
as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67 , of this instance of Schedulable41
should no longer be considered in the feasibility analysis of the associated
Scheduler45 . Whether the resulting system is feasible or not, the subtrac-
tion is completed.

Returns: true If the resulting system is feasible.

public static void setDefaultScheduler(Scheduler45
scheduler)

Set the default scheduler. This is the scheduler given to instances of
RealtimeThread23 when they are constructed. The default scheduler is
set to the required PriorityScheduler47 at startup.

PRIORITYSCHEDULER

47

Parameters:
scheduler - The Scheduler that becomes the default scheduler

assigned to new threads. If null nothing happens.

public boolean setIfFeasible(Schedulable41 schedulable,
ReleaseParameters54 release,
MemoryParameters129 memory)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public boolean setIfFeasible(Schedulable41 schedulable,
ReleaseParameters54 release,
MemoryParameters129 memory,
ProcessingGroupParameters67 group)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

4.3 PriorityScheduler

Declaration :
public class PriorityScheduler extends Scheduler45

4.3.1 Fields

public static final int MAX_PRIORITY

public static final int MIN_PRIORITY

4.3.2 Constructors

protected PriorityScheduler()
Constructor for the required scheduler.

CHAPTER 4 SCHEDULING

48

4.3.3 Methods

protected boolean addToFeasibility(Schedulable41
schedulable)

Inform the scheduler and cooperating facilities that the resource demands,
as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67 , of this instance of Schedulable41
will be considered in the feasibility analysis of the associated
Scheduler45 until further notice. Whether the resulting system is feasible
or not, the addition is completed.

Overrides: protected abstract boolean
addToFeasibility(Schedulable41 schedulable)45 in
class Scheduler45

Returns: true If the resulting system is feasible.

public void fireSchedulable(Schedulable41 schedulable)
Trigger the execution of a schedulable object (like an instance of
AsyncEventHandler183).

Overrides: public abstract void
fireSchedulable(Schedulable41 schedulable)46 in
class Scheduler45

Parameters:
schedulable - The schedulable object to make active.

public int getMaxPriority()
Returns the maximum priority available for a thread managed by this
scheduler.

public static int getMaxPriority(java.lang.Thread thread)
If the given thread is scheduled by the required PriorityScheduler the
maximum priority of the PriorityScheduler is returned otherwise
Thread.MAX_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the maximum priority of the

required PriorityScheduler is returned.

PRIORITYSCHEDULER

49

public int getMinPriority()
Returns the minimum priority available for a thread managed by this
scheduler.

public static int getMinPriority(java.lang.Thread thread)
If the given thread is scheduled by the required PriorityScheduler the
minimum priority of the PriorityScheduler is returned otherwise
Thread.MIN_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the minimum priority of the

required PriorityScheduler is returned.

public int getNormPriority()
Returns the normal priority available for a thread managed by this sched-
uler.

public static int getNormPriority(java.lang.Thread
thread)

If the given thread is scheduled by the required PriorityScheduler the
normal priority of the PriorityScheduler is returned otherwise
Thread.NORM_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the normal priority of the

required PriorityScheduler is returned.

public java.lang.String getPolicyName()
Used to determine the policy of the Scheduler.

Overrides: public abstract java.lang.String
getPolicyName()46 in class Scheduler45

Returns: A String object which is the name of the scheduling policy used
by this.

public static PriorityScheduler47 instance()
Return a pointer to an instance of PriorityScheduler.

public boolean isFeasible()

CHAPTER 4 SCHEDULING

50

Returns true if and only if the system is able to satisfy the constraints
expressed in the release parameters of the existing schedulable objects.

Overrides: public abstract boolean isFeasible()46 in class
Scheduler45

protected boolean removeFromFeasibility(Schedulable41
schedulable)

Inform the scheduler and cooperating facilities that the resource demands,
as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67 , of this instance of Schedulable41
should no longer be considered in the feasibility analysis of the associated
Scheduler45 . Whether the resulting system is feasible or not, the subtrac-
tion is completed.

Overrides: protected abstract boolean
removeFromFeasibility(Schedulable41
schedulable)46 in class Scheduler45

Returns: true If the resulting system is feasible.

public boolean setIfFeasible(Schedulable41 schedulable,
ReleaseParameters54 release,
MemoryParameters129 memory)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

Overrides: public boolean setIfFeasible(Schedulable41
schedulable, ReleaseParameters54 release,
MemoryParameters129 memory)47 in class Scheduler45

public boolean setIfFeasible(Schedulable41 schedulable,
ReleaseParameters54 release,
MemoryParameters129 memory,
ProcessingGroupParameters67 group)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,

SCHEDULINGPARAMETERS

51

the task set would not be feasible. In this case the values of the parameters
are not changed.

Overrides: public boolean setIfFeasible(Schedulable41
schedulable, ReleaseParameters54 release,
MemoryParameters129 memory,
ProcessingGroupParameters67 group)47 in class
Scheduler45

4.4 SchedulingParameters

Declaration :
public abstract class SchedulingParameters

Direct Known Subclasses: PriorityParameters51

Description :
Subclasses of SchedulingParameters (PriorityParameters51 ,
ImportanceParameters52 , and any others defined for particular schedulers)
provide the parameters to be used by the Scheduler45 . Changes to the values in a
parameters object affects the scheduling behavior of all the Schedulable41 objects
to which it is bound.

Caution: Subclasses of this class are explicitly unsafe in multithreaded situations
when they are being changed. No synchronization is done. It is assumed that users of
this class who are mutating instances will be doing their own synchronization at a
higher level.

4.4.1 Constructors

public SchedulingParameters()

4.5 PriorityParameters

Declaration :
public class PriorityParameters extends SchedulingParameters51

Direct Known Subclasses: ImportanceParameters52

Description :
Instances of this class should be assigned to threads that are managed by schedulers
which use a single integer to determine execution order. The base scheduler required

CHAPTER 4 SCHEDULING

52

by this specification and represented by the class PriorityScheduler47 is such a
scheduler.

4.5.1 Constructors

public PriorityParameters(int priority)
Create an instance of SchedulingParameters51 with the given priority.

Parameters:
priority - The priority assigned to a thread. This value is used in

place of the value returned by
java.lang.Thread.setPriority(int) .

4.5.2 Methods

public int getPriority()
Get the priority.

public void setPriority(int priority)
throws IllegalArgumentException

Set the priority.

Parameters:
priority - The new value of priority.

Throws:
IllegalArgumentException - Thrown if the given priority value is

less than the minimum priority of the scheduler of any of the
associated threads or greater then the maximum priority of the
scheduler of any of the associated threads.

public java.lang.String toString()
Overrides: java.lang.Object.toString() in class java.lang.Object

4.6 ImportanceParameters

Declaration :
public class ImportanceParameters extends PriorityParameters51

IMPORTANCEPARAMETERS

53

Description :
Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some real-time systems an external physical process determines the period of
many threads. If rate-monotonic priority assignment is used to assign priorities many
of the threads in the system may have the same priority because their periods are the
same. However, it is conceivable that some threads may be more important than
others and in an overload situation importance can help the scheduler decide which
threads to execute first. The base scheduling algorithm represented by
PriorityScheduler47 is not required to use importance. However, the RTSJ
strongly suggests to implementers that a fairly simple subclass of
PriorityScheduler47 that uses importance can offer value to some real-time
applications.

4.6.1 Constructors

public ImportanceParameters(int priority, int importance)
Create an instance of ImportanceParameters.

Parameters:
priority - The priority assigned to a thread. This value is used in

place of java.lang.Thread.priority.

importance - The importance value assigned to a thread.

4.6.2 Methods

public int getImportance()
Get the importance value.

public void setImportance(int importance)
Set the importance.

public java.lang.String toString()
Overrides: public java.lang.String toString()52 in class

PriorityParameters51

CHAPTER 4 SCHEDULING

54

4.7 ReleaseParameters

Declaration :
public class ReleaseParameters

Direct Known Subclasses: AperiodicParameters59, PeriodicParameters57

Description :
The abstract top-level class for release characteristics of threads. When a reference to
a ReleaseParameters object is given as a parameter to a constructor, the
ReleaseParameters object becomes bound to the object being created. Changes to
the values in the ReleaseParameters object affect the constructed object. If given to
more than one constructor, then changes to the values in the ReleaseParameters
object affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

4.7.1 Constructors

protected ReleaseParameters()

protected ReleaseParameters(RelativeTime156 cost,
RelativeTime156 deadline,
AsyncEventHandler183 overrunHandler,
AsyncEventHandler183 missHandler)

Subclasses use this constructor to create a ReleaseParameters type
object.

Parameters:
cost - Processing time units per interval. On implementations which

can measure the amount of time a schedulable object is
executed, this value is the maximum amount of time a
schedulable object receives per interval. On implementations
which cannot measure execution time, this value is used as a
hint to the feasibility algorithm. On such systems it is not

RELEASEPARAMETERS

55

possible to determine when any particular object exceeds cost.
Equivalent to RelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. Changing the deadline might not take effect after the
expiration of the current deadline. More detail provided in the
subclasses.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition, and waitForNextPeriod returns false immediately and
updates the start time for the next period.

missHandler - This handler is invoked if the run() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.7.2 Methods

public RelativeTime156 getCost()
Get the cost value.

public AsyncEventHandler183 getCostOverrunHandler()
Get the cost overrun handler.

public RelativeTime156 getDeadline()
Get the deadline.

public AsyncEventHandler183 getDeadlineMissHandler()
Get the deadline miss handler.

public void setCost(RelativeTime156 cost)
Set the cost value.

CHAPTER 4 SCHEDULING

56

Parameters:
cost - Processing time units per period or per minimum interarrival

interval. On implementations which can measure the amount of
time a schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per period or per
minimum interarrival interval. On implementations which
cannot measure execution time, this value is used as a hint to the
feasibility algorithm. On such systems it is not possible to
determine when any particular object exceeds or will exceed
cost time units in a period or interval. Equivalent to
RelativeTime(0,0) if null.

public void setCostOverrunHandler(AsyncEventHandler183
handler)

Set the cost overrun handler.

Parameters:
handler - This handler is invoked if an invocation of the

schedulable object exceeds cost. Not required for minimum
implementation. See comments in setCost().

public void setDeadline(RelativeTime156 deadline)
Set the deadline value.

Parameters:
deadline - The latest permissible completion time measured from

the release time of the associated invocation of the schedulable
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the period or
minimum interarrival interval. Other implementations may use
this parameter to compute execution eligibility.

public void setDeadlineMissHandler(AsyncEventHandler183
handler)

Set the deadline miss handler.

Parameters:
handler - This handler is invoked if the run() method of the

schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider

PERIODICPARAMETERS

57

deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate.

public boolean setIfFeasible(RelativeTime156 cost,
RelativeTime156 deadline)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

4.8 PeriodicParameters

Declaration :
public class PeriodicParameters extends ReleaseParameters54

Description :
This release parameter indicates that the public boolean waitForNextPeriod()
throws IllegalThreadStateException33 method on the associated
Schedulable41 object will be unblocked at the start of each period. When a
reference to a PeriodicParameters object is given as a parameter to a constructor
the PeriodicParameters object becomes bound to the object being created. Changes
to the values in the PeriodicParameters object affect the constructed object. If
given to more than one constructor then changes to the values in the
PeriodicParameters object affect all of the associated objects. Note that this is a
one-to-many relationship and not a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

4.8.1 Constructors

public PeriodicParameters(HighResolutionTime148 start,
RelativeTime156 period, RelativeTime156 cost,
RelativeTime156 deadline,
AsyncEventHandler183 overrunHandler,
AsyncEventHandler183 missHandler)

Create a PeriodicParameters object.

CHAPTER 4 SCHEDULING

58

Parameters:
start - Time at which the first period begins. If a

RelativeTime156 , this time is relative to the first time the
schedulable object becomes schedulable (schedulable time)
(e.g., when start() is called on a thread). If an
AbsoluteTime152 and it is before the schedulable time, start is
equivalent to the schedulable time.

period - The period is the interval between successive unblocks of
public boolean waitForNextPeriod()
throws IllegalThreadStateException33 . Must be
greater than zero when entering feasibility analysis.

cost - Processing time per period. On implementations which can
measure the amount of time a schedulable object is executed,
this value is the maximum amount of time a schedulable object
receives per period. On implementations which cannot measure
execution time, this value is used as a hint to the feasibility
algorithm. On such systems it is not possible to determine when
any particular object exceeds or will exceed cost time units in a
period. Equivalent to RelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the period. Other
implementations may use this parameter to compute execution
eligibility. If null, deadline will equal the period.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost in the given period. Not
required for minimum implementation. If null, nothing happens
on the overrun condition.

missHandler - This handler is invoked if the run() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.8.2 Methods

public RelativeTime156 getPeriod()

APERIODICPARAMETERS

59

Get the period.

public HighResolutionTime148 getStart()
Get the start time.

public boolean setIfFeasible(RelativeTime156 period,
RelativeTime156 cost,
RelativeTime156 deadline)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public void setPeriod(RelativeTime156 p)
Set the period.

Parameters:
period - The period is the interval between successive unblocks of

public boolean waitForNextPeriod()
throws IllegalThreadStateException33 . Also used in
the feasibility analysis and admission control algorithms.

public void setStart(HighResolutionTime148 s)
Set the start time.

Parameters:
start - Time at which the first period begins.

4.9 AperiodicParameters

Declaration :
public class AperiodicParameters extends ReleaseParameters54

Direct Known Subclasses: SporadicParameters61

Description :
This release parameter object characterizes a schedulable object that may become
active at any time. When a reference to a AperiodicParameters59 object is given
as a parameter to a constructor the AperiodicParameters59 object becomes bound

CHAPTER 4 SCHEDULING

60

to the object being created. Changes to the values in the AperiodicParameters59
object affect the constructed object. If given to more than one constructor then
changes to the values in the AperiodicParameters59 object affect all of the
associated objects. Note that this is a one-to-many relationship and not a many-to-
many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

4.9.1 Constructors

public AperiodicParameters(RelativeTime156 cost,
RelativeTime156 deadline,
AsyncEventHandler183 overrunHandler,
AsyncEventHandler183 missHandler)

Create an AperiodicParameters59 object.

Parameters:
cost - Processing time per invocation. On implementations which

can measure the amount of time a schedulable object is
executed, this value is the maximum amount of time a
schedulable object receives. On implementations which cannot
measure execution time, this value is used as a hint to the
feasibility algorithm. On such systems it is not possible to
determine when any particular object exceeds cost. Equivalent
to RelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. Not used in feasibility analysis for minimum
implementation. If null, the deadline will be
RelativeTime(Long.MAX_VALUE,999999).

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition.

missHandler - This handler is invoked if the run() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize

SPORADICPARAMETERS

61

variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.9.2 Methods

public boolean setIfFeasible(RelativeTime156 cost,
RelativeTime156 deadline)

Attempt to change the cost and deadline. The values will be changed if the
resulting system is feasible. If the resulting system would not be feasible no
changes are made.

Overrides: public boolean setIfFeasible(RelativeTime156
cost, RelativeTime156 deadline)57 in class
ReleaseParameters54

Parameters:
cost - The proposed cost. If zero, no change is made.

deadline - The proposed deadline. If zero, no change is made.

Returns: true if the resulting system is feasible and the changes are made.
false if the resulting system is not feasible and no changes are
made.

4.10 SporadicParameters

Declaration :
public class SporadicParameters extends AperiodicParameters59

Description :
A notice to the scheduler that the associated schedulable object’s run method will be
released aperiodically but with a minimum time between releases. When a reference
to a SporadicParameters object is given as a parameter to a constructor, the
SporadicParameters object becomes bound to the object being created. Changes to
the values in the SporadicParameters object affect the constructed object. If given
to more than one constructor, then changes to the values in the SporadicParameters
object affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

CHAPTER 4 SCHEDULING

62

Correct initiation of the deadline miss and cost overrun handlers requires that the
underlying system know the arrival time of each sporadic task. For an instance of
RealtimeThread23 the arrival time is the time at which the start() is invoked. For
other instances of Schedulable41 it may be required for the implementation to save
the arrival times. For instances of AsyncEventHandler183 with a
ReleaseParameters54 type of SporadicParameters the implementation must
maintain a queue of monotonically increasing arrival times which correspond to the
execution of the fire() method of the instance of AsyncEvent181 bound to the
instance of AsyncEventHandler183 .

This class allows the application to specify one of four possible behaviors that
indicate what to do if an arrival occurs that is closer in time to the previous arrival
than the value given in this class as minimum interarrival time, what to do if, for any
reason, the queue overflows, and the initial size of the queue.

4.10.1 Fields

public static final java.lang.String
arrivalTimeQueueOverflowExcept

If an arrival time occurs and should be queued but the queue already holds
a number of times equal to the initial queue length defined by this then the
fire() method shall throw a ResourceLimitError221 . If the arrival
time is a result of a happening to which the instance of
AsyncEventHandler183 is bound then the arrival time is ignored.

public static final java.lang.String
arrivalTimeQueueOverflowIgnore

If an arrival time occurs and should be queued but the queue already holds
a number of times equal to the initial queue length defined by this then the
arrival time is ignored.

public static final java.lang.String
arrivalTimeQueueOverflowReplace

If an arrival time occurs and should be queued but the queue already holds
a number of times equal to the initial queue length defined by this then the
previous arrival time is overwritten by the new arrival time. However, the
new time is adjusted so that the difference between it and the previous time
is equal to the minimum interarrival time.

SPORADICPARAMETERS

63

public static final java.lang.String
arrivalTimeQueueOverflowSave

If an arrival time occurs and should be queued but the queue already holds
a number of times equal to the initial queue length defined by this then the
queue is lengthened and the arrival time is saved.

public static final java.lang.String mitViolationExcept
If an arrival time for any instance of Schedulable41 which has this as its
instance of ReleaseParameters54 occurs at a time less then the mini-
mum interarrival time defined here then the fire() method shall throw
MITViolationException216 . If the arrival time is a result of a happen-
ing to which the instance of AsyncEventHandler183 is bound then the
arrival time is ignored.

public static final java.lang.String mitViolationIgnore
If an arrival time for any instance of Schedulable41 which has this as its
instance of ReleaseParameters54 occurs at a time less then the mini-
mum interarrival time defined here then the new arrival time is ignored.

public static final java.lang.String mitViolationReplace
If an arrival time for any instance of Schedulable41 which has this as its
instance of ReleaseParameters54 occurs at a time less then the mini-
mum interarrival time defined here then, if necessary, the previous arrival
time may be overwritten with the new arrival time.

public static final java.lang.String mitViolationSave
If an arrival time for any instance of Schedulable41 which has this as its
instance of ReleaseParameters54 occurs at a time less then the mini-
mum interarrival time defined here then the new arrival time is added to the
queue of arrival times. However, the new time is adjusted so that the differ-
ence between it and the previous time is equal to the minimum interarrival
time.

4.10.2 Constructors

public SporadicParameters(RelativeTime156 minInterarrival,
RelativeTime156 cost,

CHAPTER 4 SCHEDULING

64

RelativeTime156 deadline,
AsyncEventHandler183 overrunHandler,
AsyncEventHandler183 missHandler)

Create a SporadicParameters object.

Parameters:
minInterarrival - The release times of the schedulable object will

occur no closer than this interval. Must be greater than zero
when entering feasibility analysis.

cost - Processing time per minimum interarrival interval. On
implementations which can measure the amount of time a
schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per interval. On
implementations which cannot measure execution time, this
value is used as a hint to the feasibility algorithm. On such
systems it is not possible to determine when any particular
object exceeds cost. Equivalent to RelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the minimum
interarrival interval. Other implementations may use this
parameter to compute execution eligibility. If null, deadline will
equal the minimum interarrival time.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition.

missHandler - This handler is invoked if the run() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.10.3 Methods

public java.lang.String
getArrivalTimeQueueOverflowBehavior()

SPORADICPARAMETERS

65

Get the behavior of the arrival time queue in the event of an overflow.

public java.lang.String
getArrivalTimeQueueOverflowBehavior()

Get the behavior of the arrival time queue in the event of an overflow.

public int getInitialArrivalTimeQueueLength()
Get the initial number of elements the arrival time queue can hold.

public int getInitialArrivalTimeQueueLength()
Get the initial number of elements the arrival time queue can hold.

public RelativeTime156 getMinimumInterarrival()
Get the minimum interarrival time.

public java.lang.String getMitViolationBehavior()
Get the arrival time queue behavior in the event of a minimum interarrival
time violation.

public java.lang.String getMitViolationBehavior()
Get the arrival time queue behavior in the event of a minimum interarrival
time violation.

public void
setArrivalTimeQueueOverflowBehavior(java.l
ang.String behavior)

Set the behavior of the arrival time queue in the case where the insertion of
a new element would make the queue size greater than the initial size given
in this.

public void
setArrivalTimeQueueOverflowBehavior(java.l
ang.String behavior)

Set the behavior of the arrival time queue in the case where the insertion of
a new element would make the queue size greater than the initial size given
in this.

CHAPTER 4 SCHEDULING

66

public boolean setIfFeasible(RelativeTime156 interarrival,
RelativeTime156 cost,
RelativeTime156 deadline)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public void setInitialArrivalTimeQueueLength(int initial)
Set the initial number of elements the arrival time queue can hold without
lengthening the queue.

public void setInitialArrivalTimeQueueLength(int initial)
Set the initial number of elements the arrival time queue can hold without
lengthening the queue.

public void setMinimumInterarrival(RelativeTime156 minimum)
Set the minimum interarrival time.

Parameters:
minimum - The release times of the schedulable object will occur no

closer than this interval. Must be greater than zero when
entering feasibility analysis.

public void setMitViolationBehavior(java.lang.String
behavior)

Set the behavior of the arrival time queue in the case where the new arrival
time is closer to the previous arrival time than the minimum interarrival
time given in this.

public void setMitViolationBehavior(java.lang.String
behavior)

Set the behavior of the arrival time queue in the case where the new arrival
time is closer to the previous arrival time than the minimum interarrival
time given in this.

PROCESSINGGROUPPARAMETERS

67

4.11 ProcessingGroupParameters

Declaration :
public class ProcessingGroupParameters

Description :
This is associated with one or more schedulable objects for which the system
guarantees that the associated objects will not be given more time per period than
indicated by cost. For all threads with a reference to an instance of
ProcessingGroupParameters p and a reference to an instance of
AperiodicParameters59 no more than p.cost will be allocated to the execution of
these threads in each interval of time given by p.period after the time indicated by
p.start. When a reference to a ProcessingGroupParameters object is given as a
parameter to a constructor the ProcessingGroupParameters object becomes bound
to the object being created. Changes to the values in the
ProcessingGroupParameters object affect the constructed object. If given to more
than one constructor, then changes to the values in the ProcessingGroupParameters
object affect all of the associated objects. Note that this is a one-to-many relationship
and not a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

4.11.1 Constructors

public ProcessingGroupParameters(HighResolutionTime148
start, RelativeTime156 period,
RelativeTime156 cost,
RelativeTime156 deadline,
AsyncEventHandler183 overrunHandler,
AsyncEventHandler183 missHandler)

Create a ProcessingGroupParameters object.

Parameters:
start - Time at which the first period begins.

period - The period is the interval between successive unblocks of
waitForNextPeriod().

CHAPTER 4 SCHEDULING

68

cost - Processing time per period.

deadline - The latest permissible completion time measured from
the start of the current period. Changing the deadline might not
take effect after the expiration of the current deadline.

overrunHandler - This handler is invoked if the run() method of
the schedulable object of the previous period is still executing at
the start of the current period.

missHandler - This handler is invoked if the run() method of the
schedulable object is still executing after the deadline has
passed.

4.11.2 Methods

public RelativeTime156 getCost()
Get the cost value.

public AsyncEventHandler183 getCostOverrunHandler()
Get the cost overrun handler.

Returns: An AsyncEventHandler183 object that is cost overrun handler
of this.

public RelativeTime156 getDeadline()
Get the deadline value.

Returns: A RelativeTime156 object that represents the deadline of this.

public AsyncEventHandler183 getDeadlineMissHandler()
Get the deadline missed handler.

Returns: An AsyncEventHandler183 object that is deadline miss handler
of this.

public RelativeTime156 getPeriod()
Get the period.

Returns: A RelativeTime156 object that represents the period of time of
this.

PROCESSINGGROUPPARAMETERS

69

public HighResolutionTime148 getStart()
Get the start time.

Returns: A HighResolutionTime148 object that represents the start time
of this.

public void setCost(RelativeTime156 cost)
Set the cost value.

Parameters:
cost - The schedulable objects with a reference to this receive

cumulatively no more than cost time per period on
implementations that can collect execution time per thread.

public void setCostOverrunHandler(AsyncEventHandler183
handler)

Set the cost overrun handler.

Parameters:
handler - This handler is invoked if the run() method of the

schedulable object of the previous period is still executing at the
start of the current period.

public void setDeadline(RelativeTime156 deadline)
Set the deadline value.

Parameters:
deadline - The latest permissible completion time measured from

the start of the current period. Not used in a minimum
implementation. Other implementations may use this parameter
to compute execution eligibility. The default value is the same as
period.

public void setDeadlineMissHandler(AsyncEventHandler183
handler)

Set the deadline miss handler.

Parameters:
handler - This handler is invoked if the run() method of the

schedulable object is still executing after the deadline has
passed.

CHAPTER 4 SCHEDULING

70

public boolean setIfFeasible(RelativeTime156 period,
RelativeTime156 cost,
RelativeTime156 deadline)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public void setPeriod(RelativeTime156 period)
Set the period.

Parameters:
period - Interval used to enforce allocation of processing resources

to the associated schedulable objects. Also used in the feasibility
analysis and admission control algorithms.

public void setStart(HighResolutionTime148 start)
Set the start time.

Parameters:
start - Time at which the first period begins.

MEMORY MANAGEMENT

71

C h a p t e r 5
Memory Management

This section contains classes that:

• Allow the definition of regions of memory outside of the traditional Java heap.

• Allow the definition of regions of scoped memory, that is, memory regions with a
limited lifetime.

• Allow the definition of regions of memory containing objects whose lifetime
matches that of the application.

• Allow the definition of regions of memory mapped to specific physical addresses.

• Allow the specification of maximum memory area consumption and maximum
allocation rates for individual real-time threads.

• Allow the programmer to query information characterizing the behavior of the
garbage collection algorithm, and to some limited ability, alter the behavior of
that algorithm.

Semantics and Requirements

The following list establishes the semantics and requirements that are applicable
across the classes of this section. Semantics that apply to particular classes,
constructors, methods, and fields will be found in the class description and the
constructor, method, and field detail sections.

1. Some MemoryArea classes are required to have linear (in object size) allocation
time. The linear time attribute requires that, ignoring performance variations due

CHAPTER 5 MEMORY MANAGEMENT

72

to hardware caches or similar optimizations and execution of any static initializ-
ers, the execution time of new must be bounded by a polynomial, f(n), where n is
the size of the object and for all n>0, f(n) <= Cn for some constant C.

2. Execution time of object constructors is explicitly not considered in any bounds.

3. The structure of enclosing scopes is accessible through a set of methods on
RealtimeThread. These methods allow the outer scopes to be accessed like an
array. The algorithms for maintaining the scope structure are given in “Maintain-
ing the Scope Stack.”

4. A memory scope is represented by an instance of the ScopedMemory class. When
a new scope is entered, by calling the enter() method of the instance or by start-
ing an instance of RealtimeThread or NoHeapRealtimeThread whose construc-
tors were given a reference to an instance of ScopedMemory, all subsequent uses
of the new keyword within the program logic of the scope will allocate the mem-
ory from the memory represented by that instance of ScopedMemory. When the
scope is exited by returning from the enter() method of the instance of Scoped-
Memory, all subsequent uses of the new operation will allocate the memory from
the area of memory associated with the enclosing scope.

5. The parent of a scoped memory area is the memory area in which the object rep-
resenting the scoped memory area is allocated.

6. The single parent rule requires that a scope memory area have exactly zero or one
parent.

7. Memory scopes that are made current by entering them or passing them as the ini-
tial memory area for a new thread must satisfy the single parent rule.

8. Each instance of the class ScopedMemory or its subclasses must maintain a refer-
ence count of the number of threads in which it is being used.

9. When the reference count for an instance of the class ScopedMemory is decre-
mented from one to zero, all objects within that area are considered unreachable
and are candidates for reclamation. The finalizers for each object in the memory
associated with an instance of ScopedMemory are executed to completion before
any statement in any thread attempts to access the memory area again.

10. Objects created in any immortal memory area live for the duration of the applica-
tion. Their finalizers are only run when the application is terminated.

11. The addresses of objects in any MemoryArea that is associated with a NoHeap-
RealtimeThread must remain fixed while they are alive.

12. Each instance of the virtual machine will have exactly one instance of the class
ImmortalMemory.

13. Each instance of the virtual machine will have exactly one instance of the class
HeapMemory.

SEMANTICS AND REQUIREMENTS

73

14. Each instance of the virtual machine will behave as if there is an area of memory
into which all Class objects are placed and which is unexceptionally reference-
able by NoHeapRealtimeThreads.

15. Strict assignment rules placed on assignments to or from memory areas prevent
the creation of dangling pointers, and thus maintain the pointer safety of Java.
The restrictions are listed in the following table:

16. An implementation must ensure that the above checks are performed on every
assignment statement before the statement is executed. (This includes the possi-
bility of static analysis of the application logic).

Maintaining the Scope Stack

This section describes maintenance of a data structure that is called the scope stack.
Implementations are not required to use a stack or implement the algorithms given
here. It is only required that an implementation behave with respect to the ordering
and accessibility of memory scopes effectively as if it implemented these algorithms.

The scope stack is implicitly visible through the assignment rules, and the stack is
explicitly visible through the static getOuterMemoryArea(int index) method on
RealtimeThread.

Four operations effect the scope stack: the enter method in MemoryArea,
construction of a new RealtimeThread, the executeInArea method in
MemoryArea, and all the new instance methods in MemoryArea.

Notes:

• For the purposes of these algorithms, stacks grow up.

• The representative algorithms ignore important issues like freeing objects in
scopes.

• In every case, objects in a scoped memory area are eligible to be freed when the
reference count for the area goes to zero.

Reference to Heap Reference to Immortal Reference to Scoped

Heap Yes Yes No

Immortal Yes Yes No

Scoped Yes Yes Yes, if same, outer,
or shared scope

Local Variable Yes Yes Yes, if same, outer,
or shared scope

CHAPTER 5 MEMORY MANAGEMENT

74

• Any objects in a scoped memory area must be freed and their finalizers run before
the reference count for the memory area is incremented from zero to one.

enter
For ma.enter(logic):

if entering ma would violate the single parent rule
throw ScopedCycleException

push ma on the scope stack belonging to the current thread
execute logic.run method
pop ma from the scope stack

executeInArea or newInstance
For ma.executeInArea(logic), ma.newInstance(), or ma.newArray():

if ma is an instance of heap or immortal
start a new scope stack containing only ma
make the new scope stack the scope stack for the current threa

d
else ma is scoped

if ma is in the scope stack for the current thread
start a new scope stack containing ma and all

scopes below ma on the scope stack.
make the new scope stack the scope stack for the current t

hread
else

throw InaccessibleAreaException
execute logic.run or construct the object
restore the previous scope stack for the current thread
discard the new scope stack

Construct a RealtimeThread
For construction of a RealtimeThread in memory area cma with initial memory area
of ima:

SEMANTICS AND REQUIREMENTS

75

if cma is heap or immortal
create a new scope stack containing cma

else
start a new scope stack containing the

entire current scope stack
for every scoped memory area in the new scope stack

increment the reference count
if ima != current allocation context

push ima on new scope stack
which may throw ScopedCycleException

run the new thread with the new scope stack
when the thread terminates

every memory area pushed by the thread will have been popped
for every scoped memory area in the scope stack

decrement the reference count
free the scope stack.

The Single Parent Rule

Every push of a scoped memory type on a scope stack requires reference to the single
parent rule, which requires that every scoped memory area have no more than one
parent.

The parent of a scoped memory area is (for a stack that grows up):

• If the memory area is not currently on any scope stack, it has no parent

• If the memory area is the outermost (lowest) scoped memory area on any scope
stack, its parent is the primordial scope.

• For all other scoped memory areas, the parent is the first scoped memory are
below it on the scope stack.

Except for the primordial scope, which represents both heap and immortal memory,
only scoped memory areas are visible to the single parent rule.

The operational effect of the single parent rule is that once a scoped memory area
is assigned a parent none of the above operations can change the parent and thus an
ordering imposed by the first assignments of parents of a series of nested scoped
memory areas is the only nesting order allowed until control leaves the scopes; then a
new nesting order is posible. Thus a thread attempting to enter a scope can only do so
by entering in the established nesting order.

Scope Tree Maintenance
The single parent rule is enforced effectively as if there were a tree with the
primordial scope (representing heap and immortal memory) at its root, and other
nodes corresponding to ever scoped memory area that is currently on any threads
scope stack.

CHAPTER 5 MEMORY MANAGEMENT

76

Each scoped memory has a reference to its parent memory area, ma.parent. The
parent reference may indicate a specific scoped memory area, no parent, or the
primordial parent.

On Scope Stack Push of ma
The following procedure could be used to maintain the scope tree and ensure that
push operations on a process’ scope stack do not violate the single parent rule.

precondition: ma.parent is set to the correct parent (either a sc
oped memory area

or the primordial area) or to noParent
t.scopeStack is the scope stack of the current thread

if ma is scoped
parent = findFirstScope(t.scopeStack)
if ma.parent == noParent

ma.parent = parent
if ma.parent != parent

throw ScopedCycleException
else

t.scopeStack.push(ma)
ma.refCount++

findFirstScope is a convenience function that looks down the scope stack for the
next entry that is a reference to an instance of ScopedMemoryArea.

findFirstScope(scopeStack)
for s = top of scope stack to bottom of scope stack

if s is an instance of scopedMemory
return s

return primordial area

On Scope Stack Pop of ma

ma = t.scopeStack.pop()
if ma is scoped

ma.refCount--
if ma.refCount == 0

ma.parent = noParent

The Rationale

Languages that employ automatic reclamation of blocks of memory allocated in what
is traditionally called the heap by program logic also typically use an algorithm called
a garbage collector. Garbage collection algorithms and implementations vary in the
amount of non-determinancy they add to the execution of program logic. To date, the
expert group believes that no garbage collector algorithm or implementation is known
that allows preemption at points that leave the inter-object pointers in the heap in a
consistent state and are sufficiently close in time to minimize the overhead added to

MEMORYAREA

77

task switch latencies to a sufficiently small enough value which could be considered
appropriate for all real-time systems.

Thus, this specification provides the above described areas of memory to allow
program logic to allocate objects in a Java-like style, ignore the reclamation of those
objects, and not incur the latency of the implemented garbage collection algorithm.

Illegal Parameters

Except as noted, all byte, int, and long parameter values documented in this
chapter must be non-negative, and all object references must be non-null. The
methods will thow an IllegalArgumentException if they are passed a negative
integer-type parameter or a null object reference.

Many constructors for memory areas accept values for the area’s initial size and
its maximum size. These constructors must throw an IllegalArgumentException if
the maximum size is less than the initial size.

5.1 MemoryArea

Declaration :
public abstract class MemoryArea

Direct Known Subclasses: HeapMemory81, ImmortalMemory82,
ImmortalPhysicalMemory100, ScopedMemory84

Description :
MemoryArea is the abstract base class of all classes dealing with the representations of
allocatable memory areas, including the immortal memory area, physical memory and
scoped memory areas.

5.1.1 Constructors

protected MemoryArea(long sizeInBytes)
Parameters:

sizeInBytes - The size of MemoryArea to allocate, in bytes.

protected MemoryArea(long sizeInBytes,
java.lang.Runnable logic)

Parameters:
sizeInBytes - The size of MemoryArea to allocate, in bytes.

CHAPTER 5 MEMORY MANAGEMENT

78

logic - The run() method of this object will be called whenever
public void enter()
throws ScopedCycleException78 is called.

protected MemoryArea(SizeEstimator82 size)
Parameters:

size - A SizeEstimator object which indicates the amount of
memory required by this MemoryArea.

protected MemoryArea(SizeEstimator82 size,
java.lang.Runnable logic)

Parameters:
size - A SizeEstimator object which indicates the amount of

memory required by this MemoryArea.

logic - The run() method of this object will be called whenever
public void enter()
throws ScopedCycleException78 is called.

5.1.2 Methods

public void enter()
throws ScopedCycleException

Associate this memory area to the current real-time thread for the duration
of the execution of the run() method of the java.lang.Runnable passed
at construction time. During this bound period of execution, all objects are
allocated from the memory area until another one takes effect, or the
enter() method is exited. A runtime exception is thrown if this method is
called from thread other than a RealtimeThread23 or
NoHeapRealtimeThread33 .

Throws:
IllegalArgumentException - Thrown if no Runnable was passed

in the constructor.

ScopedCycleException219 - If entering this ScopedMemory
would violate the single parent rule.

public void enter(java.lang.Runnable logic)
throws ScopedCycleException

MEMORYAREA

79

Associate this memory area to the current real-time thread for the duration
of the execution of the run() method of the given java.lang.Runnable.
During this bound period of execution, all objects are allocated from the
memory area until another one takes effect, or the enter() method is
exited. A runtime exception is thrown if this method is called from thread
other than a RealtimeThread23 or NoHeapRealtimeThread33 .

Parameters:
logic - The Runnable object whose run() method should be

invoked.

Throws:
ScopedCycleException219 - If entering this ScopedMemory

would violate the single parent rule.

public void executeInArea(java.lang.Runnable logic)
throws InaccessibleAreaException

Execute the run method from the logic parameter using this memory area
as the current allocation context. If the memory area is a scoped memory
type, this method behaves as if it had moved the allocation context up the
scope stack to the occurrence of the memory area. If the memory area is
heap or immortal memory, this method behaves as if the run method were
running in that memory type with an empty scope stack.

Parameters:
logic - The runnable object whose run() method should be

executed.

Throws:
IllegalStateException - A non-realtime thread attempted to

enter the memory area.

InaccessibleAreaException214 - The memory area is not in the
thread’s scope stack.

public static MemoryArea77 getMemoryArea(java.lang.Object
object)

Returns the MemoryArea in which the given object is located.

Returns: The MemoryArea of the object.

public long memoryConsumed()

CHAPTER 5 MEMORY MANAGEMENT

80

An exact count, in bytes, of the all of the memory currently used by the
system for the allocated objects.

Returns: The amount of memory consumed in bytes.

public long memoryRemaining()
An approximation to the total amount of memory currently available for
future allocated objects, measured in bytes.

Returns: The amount of remaining memory in bytes

public java.lang.Object newArray(java.lang.Class type,
int number)
throws IllegalAccessException, Instantiati
onException

Allocate an array of T in this memory area.

Parameters:
type - The class of the elements of the new array.

number - The number of elements in the new array.

Returns: A new array of class type, of number elements.

Throws:
IllegalAccessException - The class or initializer is inaccessible.

InstantiationException - The array cannot be instantiated.

OutOfMemoryError - Space in the memory area is exhausted.

public java.lang.Object newInstance(java.lang.Class type)
throws IllegalAccessException, Instantiati
onException

Allocate an object in this memory area.

Parameters:
type - The class of which to create a new instance.

Returns: A new instance of class type.

Throws:
IllegalAccessException - The class or initializer is inaccessible.

InstantiationException - The specified class object could not be
instantiated. Possible causes are: it is an interface, it is abstract,
it is an array, or an exception was thrown by the constructor.

HEAPMEMORY

81

OutOfMemoryError - Space in the memory area is exhausted.

public java.lang.Object
newInstance(java.lang.reflect.Constructor
c, java.lang.Object[] args)
throws IllegalAccessException, Instantiati
onException

Allocate an object in this memory area.

Parameters:
type - The class of which to create a new instance.

Returns: A new instance of class type.

Throws:
IllegalAccessException - The class or initializer is inaccessible.

InstantiationException - The specified class object could not be
instantiated. Possible causes are: it is an interface, it is abstract,
it is an array, or an exception was thrown by the constructor.

OutOfMemoryError - Space in the memory area is exhausted.

public long size()
Query the size of the memory area. The returned value is the current size.
Current size may be larger than initial size for those areas that are allowed
to grow.

Returns: The size of the memory area in bytes.

5.2 HeapMemory

Declaration :
public final class HeapMemory extends MemoryArea77

Description :
The HeapMemory class is a singleton object that allows logic within other scoped
memory to allocate objects in the Java heap.

5.2.1 Methods

public static HeapMemory81 instance()
Returns a pointer to the singleton HeapMemory space.

CHAPTER 5 MEMORY MANAGEMENT

82

Returns: The singleton HeapMemory object.

public long memoryConsumed()
Overrides: public long memoryConsumed()79 in class MemoryArea77

public long memoryRemaining()
Overrides: public long memoryRemaining()80 in class

MemoryArea77

5.3 ImmortalMemory

Declaration :
public final class ImmortalMemory extends MemoryArea77

Description :
ImmortalMemory is a memory resource that is shared among all threads. Objects
allocated in the immortal memory live until the end of the application. Objects in
immortal memory are never subject to garbage collection, although some GC
algorithms may require a scan of the immortal memory. An immortal object may only
contain reference to other immortal objects or to heap objects. Unlike standard Java
heap objects, immortal objects continue to exist even after there are no other
references to them.

5.3.1 Methods

public static ImmortalMemory82 instance()
Returns a pointer to the singleton ImmortalMemory space.

Returns: The singleton ImmortalMemory object.

5.4 SizeEstimator

Declaration :
public final class SizeEstimator

Description :
This is a convenient class to help people figure out how much memory they need.
Instead of passing actual numbers to the MemoryArea constructors, one can pass

SIZEESTIMATOR

83

SizeEstimator objects with which you can have a better feel of how big a memory
area you require.

See Also: protected MemoryArea(SizeEstimator82 size)78, public LTMem-
ory(SizeEstimator82 initial, SizeEstimator82 maximum)94, pub-
lic VTMemory(SizeEstimator82 initial,
SizeEstimator82 maximum)91

5.4.1 Constructors

public SizeEstimator()

5.4.2 Methods

public long getEstimate()
Returns an estimate of the number of bytes needed to store all the objects
reserved.

public void reserve(java.lang.Class c, int n)
Take into account additional n instances of Class c when estimating the
size of the MemoryArea77 .

Parameters:
c - The class to take into account.

n - The number of instances of c to estimate.

public void reserve(SizeEstimator82 s)
Take into account an additional instance of SizeEstimator s when estimat-
ing the size of the MemoryArea77 .

Parameters:
c - The class to take into account.

n - The number of instances of c to estimate.

public void reserve(SizeEstimator82 s, int n)
Take into account additional n instances of SizeEstimator s when estimat-
ing the size of the MemoryArea77 .

CHAPTER 5 MEMORY MANAGEMENT

84

Parameters:
c - The class to take into account.

n - The number of instances of c to estimate.

5.5 ScopedMemory

Declaration :
public abstract class ScopedMemory extends MemoryArea77

Direct Known Subclasses: LTMemory92, LTPhysicalMemory106, VTMemory90,
VTPhysicalMemory112

Description :
ScopedMemory is the abstract base class of all classes dealing with representations of
memory spaces with a limited lifetime. The ScopedMemory area is valid as long as
there are real-time threads with access to it. A reference is created for each accessor
when either a real-time thread is created with the ScopedMemory object as its memory
area, or a real-time thread runs the public void enter()
throws ScopedCycleException86 method for the memory area. When the last
reference to the object is removed, by exiting the thread or exiting the enter()
method, finalizers are run for all objects in the memory area, and the area is emptied.

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of it. The object does not necessarily contain direct
references to the region of memory that is implementation dependent.

When a ScopedMemory area is instantiated, the object itself is allocated from the
current memory allocation scheme in use, but the memory space that object represents
is not. Typically, the memory for a ScopedMemory area might be allocated using
native method implementations that make appropriate use of malloc() and free() or
similar routines to manipulate memory.

The enter() method of ScopedMemory is the mechanism used to activate a new
memory scope. Entry into the scope is done by calling the method:

public void enter(Runnable r)
Where r is a Runnable object whose run() method represents the entry point to

the code that will run in the new scope. Exit from the scope occurs when the r.run()
completes. Allocations of objects within r.run() are done with the ScopedMemory
area. When r.run() is complete, the scoped memory area is no longer active. Its
reference count will be decremented and if it is zero all of the objects in the memory
area finalized and collected.

Objects allocated from a ScopedMemory area have a unique lifetime. They cease
to exist on exiting a public void enter() throws ScopedCycleException86

SCOPEDMEMORY

85

method or upon exiting the last real-time thread referencing the area, regardless of any
references that may exist to the object. Thus, to maintain the safety of Java and avoid
dangling references, a very restrictive set of rules apply to ScopedMemory area
objects:

1. A reference to an object in ScopedMemory can never be stored in an Object allo-
cated in the Java heap.

2. A reference to an object in ScopedMemory can never be stored in an Object allo-
cated in ImmortalMemory82 .

3. A reference to an object in ScopedMemory can only be stored in Objects allocated
in the same ScopedMemory area, or into a —- more inner —- ScopedMemory area
nested by the use of its enter() method.

4. References to immortal or heap objects may be stored into an object allocated in a
ScopedMemory area.

5.5.1 Constructors

public ScopedMemory(long size)
Create a new ScopedMemory of size size .

Parameters:
size - The size of the new ScopedMemory area in bytes. If size is

less than or equal to zero an IllegalArgumentException is
thrown.

public ScopedMemory(long size, java.lang.Runnable r)
Create a new ScopedMemory of size size and that executes r.run() when
enter() is called.

Parameters:
size - The size of the new ScopedMemory area in bytes. If size is

less than or equal to zero an IllegalArgumentException is
thrown.

r - The java.lang.Runnable whose run() method is invoked
when any of the variations of enter() which do not take a
java.lang.Runnable is called.

public ScopedMemory(SizeEstimator82 size)
Create a new ScopedMemory with size equal to size.getEstimate().

CHAPTER 5 MEMORY MANAGEMENT

86

Parameters:
size - A (@link SizeEstimator} which encapsulates the size of the

new ScopedMemory area.

public ScopedMemory(SizeEstimator82 size,
java.lang.Runnable r)

Create a new ScopedMemory with size equal to size.getEstimate(). and
that executes r.run() when enter() is called.

Parameters:
size - A (@link SizeEstimator} which encapsulates the size of the

new ScopedMemory area.

r - The java.lang.Runnable whose run() method is invoked
when any of the variations of enter() which do not take a
java.lang.Runnable is called.

5.5.2 Methods

public void enter()
throws ScopedCycleException

Associate this ScopedMemory area to the current realtime thread for the
duration of the execution of the run() method of the given
java.lang.Runnable . During this bound period of execution, all objects
are allocated from the ScopedMemory area until another one takes effect, or
the enter() method is exited. A runtime exception is thrown if this
method is called from a thread other than a RealtimeThread23 or
NoHeapRealtimeThread33 .

Overrides: public void enter()
throws ScopedCycleException78 in class MemoryArea77

Parameters:
logic - The runnable object which contains the code to execute.

Throws:
ScopedCycleException219

public void enter(java.lang.Runnable logic)
throws ScopedCycleException

Associate this ScopedMemory area to the current realtime thread for the
duration of the execution of the run() method of the given

SCOPEDMEMORY

87

java.lang.Runnable . During this bound period of execution, all objects
are allocated from the ScopedMemory area until another one takes effect, or
the enter() method is exited. A runtime exception is thrown if this
method is called from a thread other than a RealtimeThread23 or
NoHeapRealtimeThread33 .

Overrides: public void enter(java.lang.Runnable logic)
throws ScopedCycleException78 in class MemoryArea77

Parameters:
logic - The runnable object which contains the code to execute.

Throws:
ScopedCycleException219

public long getMaximumSize()
Get the maximum size this memory area can attain. If this is a fixed size
memory area, the returned value will be equal to the initial size.

Returns: The maximum size attainable.

public java.lang.Object getPortal()
Return a reference to the portal object in this instance of ScopedMemory.
For a more detailed explanation of portals see public void setPor-
tal(java.lang.Object object)90

Returns: The portal object or null if there is no portal object.

public int getReferenceCount()
Returns the reference count of this ScopedMemory. The reference count is
an indication of the number of threads that may have access to this scope.

Returns: The reference count of this ScopedMemory.

public void join()
throws InterruptedException

Wait until the reference count of this ScopedMemory goes down to zero.

Throws:
InterruptedException - If another thread interrupts this thread

while it is waiting.

public void join(HighResolutionTime148 time)

CHAPTER 5 MEMORY MANAGEMENT

88

throws InterruptedException
Wait at most until the time designated by the time parameter for the refer-
ence count of this ScopedMemory to go down to zero.

Parameters:
time - If this time is an absolute time, the wait is bounded by that

point in time. If the time is a relative time (or a member of the
RationalTime subclass of RelativeTime the wait is bounded
by a the specified interval from some time between the time
join is called and the time it starts waiting for the reference
count to reach zero.

Throws:
InterruptedException - if another thread interrupts this thread

while it is waiting.

public void joinAndEnter()
throws InterruptedException, ScopedCycleEx
ception

Combine join();enter(); such that no enter from another thread can
intervene between the two method invocations. The resulting method will
wait for the reference count on this ScopedMemory to reach zero, then enter
the ScopedMemory and execute the run method from logic passed in the
constructor. If no Runnable was passed, the method returns immediately.

Throws:
InterruptedException - If another thread interrupts this thread

while it is waiting.

ScopedCycleException219 - If entering this ScopedMemory would
violate the single parent rule.

public void joinAndEnter(HighResolutionTime148 time)
throws InterruptedException, ScopedCycleEx
ception

Combine join(time);enter(); such that no enter from another thread
can intervene between the two method invocations. The resulting method
will wait for the reference count on this ScopedMemory to reach zero, or for
the current time to reach the designated time, then enter the ScopedMemory
and execute the run method from java.lang.Runnable object passed at
construction time. If no java.lang.Runnable was passed then this
method returns immediately.

SCOPEDMEMORY

89

Parameters:
time - The time that bounds the wait.

Throws:
InterruptedException - if another thread interrupts this thread

while it is waiting.

ScopedCycleException219 - If entering this ScopedMemory would
violate the single parent rule.

public void joinAndEnter(java.lang.Runnable logic)
throws InterruptedException, ScopedCycleEx
ception

Combine join();enter(logic); such that no enter from another thread
can intervene between the two method invocations. The resulting method
will wait for the reference count on this ScopedMemory to reach zero, then
enter the ScopedMemory and execute the run method from logic

Parameters:
logic - The java.lang.Runnable object which contains the code

to execute.

Throws:
InterruptedException - If another thread interrupts this thread

while it is waiting.

ScopedCycleException219 - If entering this ScopedMemory would
violate the single parent rule.

public void joinAndEnter(java.lang.Runnable logic,
HighResolutionTime148 time)
throws InterruptedException, ScopedCycleEx
ception

Combine join(time);enter(logic); such that no enter from another
thread can intervene between the two method invocations. The resulting
method will wait for the reference count on this ScopedMemory to reach
zero, or for the current time to reach the designated time, then enter the
ScopedMemory and execute the run method from logic.

Parameters:
logic - The java.lang.Runnable object which contains the code

to execute.

time - The time that bounds the wait.

CHAPTER 5 MEMORY MANAGEMENT

90

Throws:
InterruptedException - if another thread interrupts this thread

while it is waiting.

ScopedCycleException219 - If entering this ScopedMemory would
violate the single parent rule.

public void setPortal(java.lang.Object object)
Set the argument to the portal object in the memory area represented by
this instance of ScopedMemory.

A portal can serve as a means of interthread communication and they are
used primarily when threads need to share an object that is allocated in a
ScopedMemory. The portal object for a ScopedMemory must be allocated
in the same ScopedMemory. Thus the following condition has to evaluate to
true for the portal to be set

this.equals(MemoryArea.getMemoryArea(object))

Parameters:
object - The object which will become the portal for this. If null the

previous portal object remains the portal object for this or if
there was no previous portal object then there is still no portal
object for this.

public java.lang.String toString()
Returns a user-friendly representation of this ScopedMemory.

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: The string representation

5.6 VTMemory

Declaration :
public class VTMemory extends ScopedMemory84

Description :
The execution time of an allocation from a VTMemory area may take a variable amount
of time. However, since VTMemory areas are not subject to garbage collection and
objects within it may not be moved, these areas can be used by instances of
NoHeapRealtimeThread33 .

VTMEMORY

91

5.6.1 Constructors

public VTMemory(long initialSizeInBytes,
long maxSizeInBytes)

Creates a VTMemory of the given size.

Parameters:
initialSizeInBytes - The size in bytes of the memory to initially

allocate for this area.

maximumSizeInBytes - The maximum size in bytes this memory
area can grow to.

public VTMemory(long initialSizeInBytes,
long maxSizeInBytes,
java.lang.Runnable logic)

Creates a VTMemory of the given size and logic.

Parameters:
initialSizeInBytes - The size in bytes of the memory to initially

allocate for this area.

maximumSizeInBytes - The maximum size in bytes this memory
area can grow to.

logic - The logic associated with this.

public VTMemory(SizeEstimator82 initial,
SizeEstimator82 maximum)

Creates a VTMemory of the given size estimated by two instances of
SizeEstimator82 .

Parameters:
initial - The instance of SizeEstimator82 which will set the

initial allocation allocate for this area.

maximum - The instance of SizeEstimator82 which will set the
maximum allocation allocate for this area.

public VTMemory(SizeEstimator82 initial,
SizeEstimator82 maximum,
java.lang.Runnable logic)

CHAPTER 5 MEMORY MANAGEMENT

92

Creates a VTMemory of the given size estimated by two instances of
SizeEstimator82 and logic.

Parameters:
initial - The instance of SizeEstimator82 which will set the

initial allocation allocate for this area.

maximum - The instance of SizeEstimator82 which will set the
maximum allocation allocate for this area.

logic - The logic associated with this.

5.6.2 Methods

public long getMaximumSize()
Return the value which defines the maximum size to which this can grow.

Overrides: public long getMaximumSize()87 in class
ScopedMemory84

public java.lang.String toString()
Overrides: public java.lang.String toString()90 in class

ScopedMemory84

5.7 LTMemory

Declaration :
public class LTMemory extends ScopedMemory84

Description :
LTMemory represents a memory area, allocated per RealtimeThread23 , or for a
group of real-time threads, guaranteed by the system to have linear time allocation.
The memory area described by a LTMemory instance does not exist in the Java heap,
and is not subject to garbage collection. Thus, it is safe to use a LTMemory object as
the memory area associated with a NoHeapRealtimeThread33 , or to enter the
memory area using the public void enter()
throws ScopedCycleException86 method within a NoHeapRealtimeThread33 .
An LTMemory area has an initial size. Enough memory must be committed by the
completion of the constructor to satisfy this initial requirement. (Committed means
that this memory must always be available for allocation). The initial memory
allocation must behave, with respect to successful allocation, as if it were contiguous;
i.e., a correct implementation must guarantee that any sequence of object allocations

LTMEMORY

93

that could ever succeed without exceeding a specified initial memory size will always
succeed without exceeding that initial memory size and succeed for any instance of
LTMemory with that initial memory size. (Note: It is important to understand that the
above statement does not require that if the initial memory size is N and
(sizeof(object1) + sizeof(object2) + ... + sizeof(objectn) = N) the allocations of
objects 1 through n will necessarily succeed.) Execution time of an allocator
allocating from this initial area must be linear in the size of the allocated object.
Execution time of an allocator allocating from memory between initial and maximum
is allowed to vary. Furthermore, the underlying system is not required to guarantee
that memory between initial and maximum will always be available. (Note: to ensure
that all requested memory is available set initial and maximum to the same value)

See Also: MemoryArea77, ScopedMemory84, RealtimeThread23,
NoHeapRealtimeThread33

5.7.1 Constructors

public LTMemory(long initialSizeInBytes,
long maxSizeInBytes)

Create an LTMemory of the given size.

Parameters:
initialSizeInBytes - The size in bytes of the memory to allocate

for this area. This memory must be committed before the
completion of the constructor.

maxSizeInBytes - The size in bytes of the memory to allocate for
this area.

public LTMemory(long initialSizeInBytes,
long maxSizeInBytes,
java.lang.Runnable logic)

Create an LTMemory of the given size and logic.

Parameters:
initialSizeInBytes - The size in bytes of the memory to allocate

for this area. This memory must be committed before the
completion of the constructor.

maxSizeInBytes - The size in bytes of the memory to allocate for
this area.

CHAPTER 5 MEMORY MANAGEMENT

94

public LTMemory(SizeEstimator82 initial,
SizeEstimator82 maximum)

Creates a LTMemory of the given size estimated by two instances of
SizeEstimator82 .

Parameters:
initial - The instance of SizeEstimator82 which will set the

initial allocation allocate for this area.

maximum - The instance of SizeEstimator82 which will set the
maximum allocation allocate for this area.

public LTMemory(SizeEstimator82 initial,
SizeEstimator82 maximum,
java.lang.Runnable logic)

Creates a LTMemory of the given size estimated by two instances of
SizeEstimator82 and logic.

Parameters:
initial - The instance of SizeEstimator82 which will set the

initial allocation allocate for this area.

maximum - The instance of SizeEstimator82 which will set the
maximum allocation allocate for this area.

logic - The logic associated with this.

5.7.2 Methods

public long getMaximumSize()
Return the value which defines the maximum size to which this can grow.

Overrides: public long getMaximumSize()87 in class
ScopedMemory84

public java.lang.String toString()
Overrides: public java.lang.String toString()90 in class

ScopedMemory84

PHYSICALMEMORYMANAGER

95

5.8 PhysicalMemoryManager

Declaration :
public final class PhysicalMemoryManager

Description :
The PhysicalMemoryManager is available for use by the various physical memory
accessor objects (VTPhysicalMemory112 , LTPhysicalMemory106 ,
ImmortalPhysicalMemory100 , RawMemoryAccess117 , and
RawMemoryFloatAccess125) to create objects of the correct type that are bound to
areas of physical memory with the appropriate characteristics —- or with appropriate
accessor behavior. Examples of characteristics that might be specified are: DMA
memory, accessors with byte swapping, etc.

The base implementation will provide a PhysicalMemoryManager and a set of
PhysicalMemoryTypeFilter98 classes that correctly identify memory classes that
are standard for the (OS, JVM, and processor) platform.

OEMs may provide PhysicalMemoryTypeFilter98 classes that allow
additional characteristics of memory devices to be specified.

Memory attributes that are configured may not be compatible with one another.
For instance, copy-back cache enable may be incompatible with execute-only. In this
case, the implementation of memory filters may detect conflicts and throw a
MemoryTypeConflictException215 , but since filters are not part of the normative
RTSJ, this exception is at best advisory.

5.8.1 Fields

public static final java.lang.String ALIGNED
Specify this to identify aligned memory.

public static final java.lang.String BYTESWAP
Specify this if byte swapping should be used.

public static final java.lang.String DMA
Specify this to identify DMA memory.

public static final java.lang.String SHARED
Specify this to identify shared memory.

CHAPTER 5 MEMORY MANAGEMENT

96

5.8.2 Methods

public static boolean isRemovable(long address,
long size)

Is the specified range of memory removable?

Parameters:
address - The starting address in physical memory

size - The size of the memory area

Returns: true if any part of the specified range can be removed

public static boolean isRemoved(long address, long size)
Is any part of the specified range of memory presently removed? This
method is used for devices that lie in the memory address space and can be
removed while the system is running. (Such as PC cards)

Parameters:
address - The starting address in physical memory

size - The size of the memory area

Returns: true if any part of the specified range is currently not usable

public static void onInsertion(long base, long size,
AsyncEventHandler183 aeh)

Register the specified AsyncEventHandler183 to run when any memory
in the range is added to the system. If the specified range of physical mem-
ory contains multiple different types of removable memory, the AEH will
be registered with any one of them. If the size or the base is less than 0,
unregister all “remove” references to the AEH.

Parameters:
base - The starting address in physical memory

size - The size of the memory area

aeh - Register this AEH.

Throws:
IllegalArgumentException - If the specified range contains no

removable memory.

public static void onRemoval(long base, long size,
AsyncEventHandler183 aeh)

PHYSICALMEMORYMANAGER

97

Register the specified AEH to run when any memory in the range is
removed from the system. If the specified range of physical memory con-
tains multiple different types of removable memory, the aeh will be regis-
tered with any one of them. If the size or the base is less than 0, remove all
“remove” references to the aeh.

Parameters:
base - The starting address in physical memory

size - The size of the memory area

aeh - Register this aeh.

Throws:
IllegalArgumentException - if the specified range contains no

removable memory.

public static final void registerFilter(java.lang.Object
name, PhysicalMemoryTypeFilter98 filter)
throws DuplicateFilterException, IllegalAr
gumentException

Register a memory type filter with the physical memory manager.

Parameters:
name - The type of memory handled by this filter

filter - The filter object

Throws:
DuplicateFilterException214 - A filter for this type of memory

already exists

RuntimeException - The system is configured for a bounded
number of filters. This filter exceeds the bound.

IllegalArgumentException - The name parameter must not be an
array of objects.

IllegalArgumentException - The name and filter must both be in
immortal memory.

public static final void removeFilter(java.lang.Object
name)

Remove the identified filter from the set of registered filters.

Parameters:
name - The identifying object for this memory attribute.

CHAPTER 5 MEMORY MANAGEMENT

98

5.9 PhysicalMemoryTypeFilter

Declaration :
public interface PhysicalMemoryTypeFilter

5.9.1 Methods

public boolean contains(long base, long size)
Does the specified range of memory contain any of this type?

Parameters:
base - The physical address of the beginning of the memory region.

size - The size of the memory region.

Returns: true If the specified range contains any of this type of memory.

public long find(long base, long size)
Search for memory of the right type.

Parameters:
base - Start searching at this address.

size - Find at least this much memory.

Returns: The address where memory was found or -1 if it was not found.

public int getVMAttributes()
Return the virtual memory attributes of this type of memory.

public int getVMFlags()
Return the virtual memory flags of this type of memory.

public void initialize(long base, long vBase, long size)
If configuration is required for memory to fit the attribute of this object, do
the configuration here.

Parameters:
base - The address of the beginning of the physical memory region.

vBase - The address of the beginning of the virtual memory region.

size - The size of the memory region.

PHYSICALMEMORYTYPEFILTER

99

Throws:
IllegalArgumentException - if the base and size do not fall into

this type of memory

public boolean isPresent(long base, long size)
Checks if all of the specified range of physical memory present in the sys-
tem. If any of it has been removed, false is returned.

Parameters:
base - The physical address of the beginning of the memory region.

size - The size of the memory region.

Throws:
IllegalArgumentException - if the base and size do not fall into

this type of memory

public boolean isRemovable()
If this type of memory is removable, return true.

Returns: true if this type of memory is removable.

public void onInsertion(long base, long size,
AsyncEventHandler183 aeh)

Arrange for the specified AsyncEventHandler183 to be called if any
memory in the specified range is inserted.

Parameters:
base - The physical address of the beginning of the memory region.

size - The size of the memory region.

aeh - Run this if any memory in the specified range is inserted.

Throws:
IllegalArgumentException - if the base and size do not fall into

this type of memory

public void onRemoval(long base, long size,
AsyncEventHandler183 aeh)

Arrange for the specified AsyncEventHandler183 to be called if any
memory in the specified range is removed.

Parameters:
base - The physical address of the beginning of the memory region.

CHAPTER 5 MEMORY MANAGEMENT

100

size - The size of the memory region.

aeh - Run this if any memory in the specified range is removed.

Throws:
IllegalArgumentException - if the base and size do not fall into

this type of memory

public long vFind(long base, long size)
Search for virtual memory of the right type. This is important for systems
where attributes are associated with particular ranges of virtual memory.

Parameters:
base - Start searching at this address.

size - Find at least this much memory.

Returns: The address where memory was found or -1 if it was not found.

5.10 ImmortalPhysicalMemory

Declaration :
public class ImmortalPhysicalMemory extends MemoryArea77

Description :
An instance of ImmortalPhysicalMemory allows objects to be allocated from a range
of physical memory with particular attributes, determined by their memory type. This
memory area has the same restrictive set of assignment rules as ImmortalMemory82
memory areas, and may be used in any context where ImmortalMemory is
appropriate. Objects allocated in immortal physical memory have a lifetime greater
than the application as do objects allocated in immortal memory.

5.10.1 Constructors

public ImmortalPhysicalMemory(java.lang.Object type,
long size)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

IMMORTALPHYSICALMEMORY

101

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215

public ImmortalPhysicalMemory(java.lang.Object type,
long base, long size)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public ImmortalPhysicalMemory(java.lang.Object type,
long base, long size,

CHAPTER 5 MEMORY MANAGEMENT

102

java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - The size of the area in bytes.

logic - The run() method of this object will be called whenever
public void enter()
throws ScopedCycleException78 is called.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public ImmortalPhysicalMemory(java.lang.Object type,
long size, java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - The size of the area in bytes.

IMMORTALPHYSICALMEMORY

103

logic - The run() method of this object will be called whenever
public void enter()
throws ScopedCycleException78 is called.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public ImmortalPhysicalMemory(java.lang.Object type,
long base, SizeEstimator82 size)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - A size estimator for this memory area.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

CHAPTER 5 MEMORY MANAGEMENT

104

MemoryInUseException219 - The specified memory is already in
use.

public ImmortalPhysicalMemory(java.lang.Object type,
long base, SizeEstimator82 size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - A size estimator for this memory area.

logic - The run() method of this object will be called whenever
public void enter()
throws ScopedCycleException78 is called.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public ImmortalPhysicalMemory(java.lang.Object type,
SizeEstimator82 size)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

IMMORTALPHYSICALMEMORY

105

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - A size estimator for this area.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public ImmortalPhysicalMemory(java.lang.Object type,
SizeEstimator82 size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - A size estimator for this area.

logic - The run() method of this object will be called whenever
public void enter()
throws ScopedCycleException78 is called.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

CHAPTER 5 MEMORY MANAGEMENT

106

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

5.11 LTPhysicalMemory

Declaration :
public class LTPhysicalMemory extends ScopedMemory84

Description :
An instance of LTPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type. This
memory area has the same restrictive set of assignment rules as ScopedMemory84
memory areas, and the same performance restrictions as LTMemory.

See Also: MemoryArea77, ScopedMemory84, VTMemory90, LTMemory92,
VTPhysicalMemory112, ImmortalPhysicalMemory100, RealtimeThread23,
NoHeapRealtimeThread33

5.11.1 Constructors

public LTPhysicalMemory(java.lang.Object type, long size)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

LTPHYSICALMEMORY

107

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public LTPhysicalMemory(java.lang.Object type, long base,
long size)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public LTPhysicalMemory(java.lang.Object type, long base,
long size, java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

CHAPTER 5 MEMORY MANAGEMENT

108

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - The size of the area in bytes.

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public LTPhysicalMemory(java.lang.Object type, long size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - The size of the area in bytes.

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

LTPHYSICALMEMORY

109

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public LTPhysicalMemory(java.lang.Object type, long base,
SizeEstimator82 size)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - A size estimator for this memory area.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public LTPhysicalMemory(java.lang.Object type, long base,
SizeEstimator82 size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE

CHAPTER 5 MEMORY MANAGEMENT

110

xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - A size estimator for this memory area.

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public LTPhysicalMemory(java.lang.Object type,
SizeEstimator82 size)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - A size estimator for this area.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

LTPHYSICALMEMORY

111

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public LTPhysicalMemory(java.lang.Object type,
SizeEstimator82 size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - A size estimator for this area.

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

5.11.2 Methods

public java.lang.String toString()
Overrides: public java.lang.String toString()90 in class

ScopedMemory84

CHAPTER 5 MEMORY MANAGEMENT

112

5.12 VTPhysicalMemory

Declaration :
public class VTPhysicalMemory extends ScopedMemory84

Description :
An instance of VTPhysicalMemory allows objects to be allocated from a range of
physical memory with particular attributes, determined by their memory type. This
memory area has the same restrictive set of assignment rules as ScopedMemory84
memory areas, and the same performance restrictions as VTMemory.

See Also: MemoryArea77, ScopedMemory84, VTMemory90, LTMemory92,
LTPhysicalMemory106, ImmortalPhysicalMemory100, RealtimeThread23,
NoHeapRealtimeThread33

5.12.1 Constructors

public VTPhysicalMemory(java.lang.Object type, long size)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public VTPhysicalMemory(java.lang.Object type, long base,

VTPHYSICALMEMORY

113

long size)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public VTPhysicalMemory(java.lang.Object type, long base,
long size, java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - The size of the area in bytes.

logic - enter this memory area with this Runnable after the
memory area is created.

CHAPTER 5 MEMORY MANAGEMENT

114

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public VTPhysicalMemory(java.lang.Object type, long size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - The size of the area in bytes.

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

VTPHYSICALMEMORY

115

public VTPhysicalMemory(java.lang.Object type, long base,
SizeEstimator82 size)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - A size estimator for this memory area.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public VTPhysicalMemory(java.lang.Object type, long base,
SizeEstimator82 size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, OffsetOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException, MemoryInUseException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

base - The physical memory address of the area.

size - A size estimator for this memory area.

CHAPTER 5 MEMORY MANAGEMENT

116

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given range of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

MemoryInUseException219 - The specified memory is already in
use.

public VTPhysicalMemory(java.lang.Object type,
SizeEstimator82 size)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - A size estimator for this area.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

RAWMEMORYACCESS

117

public VTPhysicalMemory(java.lang.Object type,
SizeEstimator82 size,
java.lang.Runnable logic)
throws SecurityException, SizeOutOfBoundsE
xception, UnsupportedPhysicalMemoryExcepti
on, MemoryTypeConflictException

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping.

size - A size estimator for this area.

logic - enter this memory area with this Runnable after the
memory area is created.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

SizeOutOfBoundsException217 - The size extends into an invalid
range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

5.12.2 Methods

public java.lang.String toString()
Overrides: public java.lang.String toString()90 in class

ScopedMemory84

5.13 RawMemoryAccess

Declaration :
public class RawMemoryAccess

Direct Known Subclasses: RawMemoryFloatAccess125

CHAPTER 5 MEMORY MANAGEMENT

118

Description :
An instance of RawMemoryAccess models a range of physical memory as a fixed
sequence of bytes. A full complement of accessor methods allow the contents of the
physical area to be accessed through offsets from the base, interpreted as byte, short,
int, or long data values or as arrays of these types.

Whether the offset addresses the high-order or low-order byte is based on the
value of the BYTE_ORDER static boolean variable in class RealtimeSystem210 .

The RawMemoryAccess class allows a real-time program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar low-
level software.

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error-
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

Many of the constructors and methods in this class throw
OffsetOutOfBoundsException217 . This exception means that the value given in
the offset parameter is either negative or outside the memory area.

Many of the constructors and methods in this class throw
SizeOutOfBoundsException217 . This exception means that the value given in the
size parameter is either negative, larger than an allowable range, or would cause an
accessor method to access an address outside of the memory area.

Unlike other integral parameters in this chapter, negative values are valid for
byte, short, int, and long values that are copied in and out of memory by the
set and get methods of this class.

5.13.1 Constructors

public RawMemoryAccess(java.lang.Object type, long size)
throws SecurityException, OffsetOutOfBound
sException, SizeOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException

Creates a RawMemoryAccess object based on the parameters passed.

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared, etc) - used to define the base address and control
the mapping.

size - The size of the area in bytes.

RAWMEMORYACCESS

119

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

public RawMemoryAccess(java.lang.Object type, long base,
long size)
throws SecurityException, OffsetOutOfBound
sException, SizeOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException

Creates a RawMemoryAccess object based on the parameters passed.

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared, etc) - used to define the base address and control
the mapping.

base - The starting address for this physical memory area.

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215 - The specified base does not
point to memory that matches the request type, or if type
specifies attributes with a conflict.

CHAPTER 5 MEMORY MANAGEMENT

120

5.13.2 Methods

public byte getByte(long offset)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get the byte at the given offset.

Parameters:
offset - The offset at which to read the byte.

Returns: The byte read.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void getBytes(long offset, byte[] bytes, int low,
int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get number bytes starting at the given offset and assign them to the byte
array passed starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public int getInt(long offset)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get the int at the given offset.

Parameters:
offset - The offset at which to read the integer.

Returns: The int read.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void getInts(long offset, int[] ints, int low,
int number)

RAWMEMORYACCESS

121

throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get number ints starting at the given offset and assign them to the int array
passed starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public long getLong(long offset)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get the long at the given offset.

Parameters:
offset - The offset at which to read the long.

Returns: The long read.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void getLongs(long offset, long[] longs, int low,
int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get number longs starting at the given offset and assign them to the long
array passed starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public long getMappedAddress()
Returns the virtual memory location at which the memory region is
mapped.

Returns: The virtual address to which this is mapped (for reference
purposes). Same as the base address if virtual memory is not
supported.

public short getShort(long offset)

CHAPTER 5 MEMORY MANAGEMENT

122

throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get the short at the given offset.

Parameters:
offset - The offset at which to read the short.

Returns: The short read.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void getShorts(long offset, short[] shorts,
int low, int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get number shorts starting at the given offset and assign them to the short
array passed starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public long map()
Maps the physical memory range into virtual memory. No-op if the system
doesn’t support virtual memory.

public long map(long base)
Maps the physical memory range into virtual memory at the specified loca-
tion. No-op if the system doesn’t support virtual memory.

Parameters:
base - The location to map at the virtual memory space.

public long map(long base, long size)
Maps the physical memory range into virtual memory. No-op if the system
doesn’t support virtual memory.

Parameters:
base - The location to map at the virtual memory space.

size - Teh size of the block to map in.

RAWMEMORYACCESS

123

public void setByte(long offset, byte value)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set the byte at the given offset.

Parameters:
offset - The offset at which to write the byte.

value - The byte to write.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void setBytes(long offset, byte[] bytes, int low,
int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set number bytes starting at the given offset from the byte array passed
starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void setInt(long offset, int value)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set the int at the given offset.

Parameters:
offset - The offset at which to write the int.

value - The integer to write.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void setInts(long offset, int[] ints, int low,
int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

CHAPTER 5 MEMORY MANAGEMENT

124

Set number ints starting at the given offset from the int array passed start-
ing at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void setLong(long offset, long value)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set the long at the given offset.

Parameters:
offset - The offset at which to write the long.

value - The long to write.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void setLongs(long offset, long[] longs, int low,
int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set number longs starting at the given offset from the long array passed
starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void setShort(long offset, short value)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set the short at the given offset.

Parameters:
offset - The offset at which to write the short.

value - The short to write.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

RAWMEMORYFLOATACCESS

125

public void setShorts(long offset, short[] shorts,
int low, int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set number shorts starting at the given offset from the short array passed
starting at position low.

Throws:
SizeOutOfBoundsException217,

OffsetOutOfBoundsException217

public void unmap()
Unmap the physical memory range from virtual memory. No-op if the sys-
tem doesn’t support virtual memory.

5.14 RawMemoryFloatAccess

Declaration :
public class RawMemoryFloatAccess extends RawMemoryAccess117

Description :
This class holds the accessor methods for accessing a raw memory area by float and
double types. Implementations are required to implement this class if and only if the
underlying Java Virtual Machine supports floating point data types.

Many of the constructors and methods in this class throw
OffsetOutOfBoundsException217 . This exception means that the value given in
the offset parameter is either negative or outside the memory area.

Many of the constructors and methods in this class throw
SizeOutOfBoundsException217 . This exception means that the value given in the
size parameter is either negative, larger than an allowable range, or would cause an
accessor method to access an address outside of the memory area.

5.14.1 Constructors

public RawMemoryFloatAccess(java.lang.Object type,
long size)
throws SecurityException, OffsetOutOfBound
sException, SizeOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException

CHAPTER 5 MEMORY MANAGEMENT

126

Create a RawMemoryFloatAccess object.

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

MemoryTypeConflictException215

public RawMemoryFloatAccess(java.lang.Object type,
long base, long size)
throws SecurityException, OffsetOutOfBound
sException, SizeOutOfBoundsException, Unsu
pportedPhysicalMemoryException, MemoryType
ConflictException

Create a RawMemoryFloatAccess object.

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control the
mapping

size - The size of the area in bytes.

Throws:
SecurityException - The application doesn’t have permissions to

access physical memory or the given type of memory.

OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException218 - Thrown if the
underlying hardware does not support the given type.

RAWMEMORYFLOATACCESS

127

MemoryTypeConflictException215

5.14.2 Methods

public double getDouble(long offset)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get the double at the given offset.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

public void getDoubles(long offset, double[] doubles,
int low, int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get number double values starting at the given offset in this, and assigns
them into the double array starting at position low.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

public float getFloat(long offset)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get the float at the given offset.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

public void getFloats(long offset, float[] floats,
int low, int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

CHAPTER 5 MEMORY MANAGEMENT

128

Get number float values starting at the given offset in this and assign
them into the byte array starting at position low.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

public void setDouble(long offset, double value)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set the double at the given offset.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

public void setDoubles(long offset, double[] doubles,
int low, int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Get number double values starting at the given offset in this, and assigns
them into the double array starting at position low.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

public void setFloat(long offset, float value)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set the float at the given offset.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

MEMORYPARAMETERS

129

public void setFloats(long offset, float[] floats,
int low, int number)
throws OffsetOutOfBoundsException, SizeOut
OfBoundsException

Set number float values starting at the given offset in this from the byte
array starting at position low.

Throws:
OffsetOutOfBoundsException217 - The address is invalid.

SizeOutOfBoundsException217 - The size is negative or extends
into an invalid range of memory.

5.15 MemoryParameters

Declaration :
public class MemoryParameters

Description :
Memory parameters can be given on the constructor of RealtimeThread and
AsyncEventHandler. These can be used both for the purposes of admission control
by the scheduler and for the purposes of pacing the garbage collector to satisfy all of
the thread allocation rates.

When a reference to a MemoryParameters object is given as a parameter to a
constructor, the MemoryParameters object becomes bound to the object being
created. Changes to the values in the MemoryParameters object affect the constructed
object. If given to more than one constructor, then changes to the values in the
MemoryParameters object affect all of the associated objects. Note that this is a one-
to-many relationship and not a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

5.15.1 Fields

public static final long NO_MAX
Specifies no maximum limit.

CHAPTER 5 MEMORY MANAGEMENT

130

5.15.2 Constructors

public MemoryParameters(long maxMemoryArea,
long maxImmortal)
throws IllegalArgumentException

Create a MemoryParameters object with the given values.

Parameters:
maxMemoryArea - A limit on the amount of memory the thread may

allocate in the memory area. Units are in bytes. If zero, no
allocation allowed in the memory area. To specify no limit, use
NO_MAX or a value less than zero.

maxImmortal - A limit on the amount of memory the thread may
allocate in the immortal area. Units are in bytes. If zero, no
allocation allowed in immortal. To specify no limit, use
NO_MAX or a value less than zero.

Throws:
IllegalArgumentException

public MemoryParameters(long maxMemoryArea,
long maxImmortal, long allocationRate)
throws IllegalArgumentException

Create a MemoryParameters object with the given values.

Parameters:
maxMemoryArea - A limit on the amount of memory the thread may

allocate in the memory area. Units are in bytes. If zero, no
allocation allowed in the memory area. To specify no limit, use
NO_MAX or a value less than zero.

maxImmortal - A limit on the amount of memory the thread may
allocate in the immortal area. Units are in bytes. If zero, no
allocation allowed in immortal. To specify no limit, use
NO_MAX or a value less than zero.

allocationRate - A limit on the rate of allocation in the heap.
Units are in bytes per second. If zero, no allocation is allowed in
the heap. To specify no limit, use NO_MAX or a value less than
zero.

Throws:
IllegalArgumentException

MEMORYPARAMETERS

131

5.15.3 Methods

public long getAllocationRate()
Get the allocation rate. Units are in bytes per second.

public long getMaxImmortal()
Get the limit on the amount of memory the thread may allocate in the
immortal area. Units are in bytes.

public long getMaxMemoryArea()
Get the limit on the amount of memory the thread may allocate in the mem-
ory area. Units are in bytes.

public void setAllocationRate(long allocationRate)
A limit on the rate of allocation in the heap.

Parameters:
allocationRate - Units are in bytes per second. If zero, no

allocation is allowed in the heap. To specify no limit, use
NO_MAX or a value less than zero.

public boolean setAllocationRateIfFeasible(int
allocationRate)

Change the limit on the rate of allocation in the heap. If this Memory-
Parameters object is currently associated with one or more realtime
threads that have been passed admission control, this change in allocation
rate will be submitted to admission control. The scheduler (in conjunction
with the garbage collector) will either admit all the effected threads with
the new allocation rate, or leave the allocation rate unchanged and cause
setAllocationRateIfFeasible to return false.

Parameters:
allocationRate - Units are in bytes per second. If zero, no

allocation is allowed in the heap. To specify no limit, use
NO_MAX or a value less than zero.

Returns: true if the request was fulfilled.

public boolean setMaxImmortalIfFeasible(long maximum)

CHAPTER 5 MEMORY MANAGEMENT

132

A limit on the amount of memory the thread may allocate in the immortal
area.

Parameters:
maximum - Units are in bytes. If zero, no allocation allowed in

immortal. To specify no limit, use NO_MAX or a value less
than zero.

Returns: False if any of the threads have already allocated more than the
given value. In this case the call has no effect.

public boolean setMaxMemoryAreaIfFeasible(long maximum)
A limit on the amount of memory the thread may allocate in the memory
area.

Parameters:
maximum - Units are in bytes. If zero, no allocation allowed in the

memory area. To specify no limit, use NO_MAX or a value less
than zero.

Returns: False if any of the threads have already allocated more than the
given value. In this case the call has no effect.

5.16 GarbageCollector

Declaration :
public abstract class GarbageCollector

Description :
The system shall provide dynamic and static information characterizing the temporal
behavior and imposed overhead of any garbage collection algorithm provided by the
system. This information shall be made available to applications via methods on
subclasses of GarbageCollector. Implementations are allowed to provide any set of
methods in subclasses as long as the temporal behavior and overhead are sufficiently
categorized. The implementations are also required to fully document the subclasses.
In addition, the method(s) in GarbageCollector shall be made available by all
implementations.

5.16.1 Constructors

public GarbageCollector()

GARBAGECOLLECTOR

133

5.16.2 Methods

public abstract RelativeTime156 getPreemptionLatency()
Preemption latency is a measure of the maximum time a
RealtimeThread23 may have to wait for the collector to reach a preemp-
tion-safe point. Instances of RealtimeThread23 are allowed to preeempt
the garbage collector (instances of NoHeapRealtimeThread33 preempt
immediately but instances of RealtimeThread23 must wait until the col-
lector reaches a preemption-safe point).

Returns: The preempting latency of this if applicable. May return 0 if there
is no collector available

CHAPTER 5 MEMORY MANAGEMENT

134

SYNCHRONIZATION

135

C h a p t e r 6
Synchronization

This section contains classes that:

• Allow the application of the priority ceiling emulation algorithm to individual
objects.

• Allow the setting of the system default priority inversion algorithm.

• Allow wait-free communication between real-time threads and regular Java
threads.

The specification strengthens the semantics of Java synchronization for use in real-
time systems by mandating monitor execution eligibility control, commonly referred
to as priority inversion control. A MonitorControl class is defined as the superclass
of all such execution eligibility control algorithms. PriorityInheritance is the
default monitor control policy; the specification also defines a
PriorityCeilingEmulation option.

The wait-free queue classes provide protected, concurrent access to data shared
between instances of java.lang.Thread and NoHeapRealtimeThread.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

CHAPTER 6 SYNCHRONIZATION

136

1. Threads waiting to enter synchronized blocks are priority queue ordered. If
threads with the same priority are possible under the active scheduling policy
such threads are queued in FIFO order.

2. Any conforming implementation must provide an implementation of the synchro-
nized primitive with default behavior that ensures that there is no unbounded pri-
ority inversion. Furthermore, this must apply to code if it is run within the
implementation as well as to real-time threads.

3. The Priority Inheritance monitor control policy must be implemented.

4. Implementations that provide a monitor control algorithm in addition to those
described herein are required to clearly document the behavior of that algorithm.

Rationale

Java monitors, and especially the synchronized keyword, provide a very elegant
means for mutual exclusion synchronization. Thus, rather than invent a new real-time
synchronization mechanism, this specification strengthens the semantics of Java
synchronization to allow its use in real-time systems. In particular, this specification
mandates priority inversion control. Priority inheritance and priority ceiling emulation
are both popular priority inversion control mechanisms; however, priority inheritance
is more widely implemented in real-time operating systems and so is the default
mechanism in this specification.

By design the only mechanism required by this specification which can enforce
mutual exclusion in the traditional sense is the keyword synchronized. Noting that
the specification allows the use of synchronized by both instances of
java.lang.Thread, RealtimeThread, and NoHeapRealtimeThread and that such
flexibility precludes the correct implementation of any known priority inversion
algorithm when locked objects are accessed by instances of java.lang.Thread and
NoHeapRealtimeThread, it is incumbent on the specification to provide alternate
means for protected, concurrent data access by both types of threads (protected means
access to data without the possibility of corruption). The three wait-free queue classes
provide such access.

6.1 MonitorControl

Declaration :
public abstract class MonitorControl

Direct Known Subclasses: PriorityCeilingEmulation138,
PriorityInheritance138

MONITORCONTROL

137

Description :
Abstract superclass for all monitor control policy objects.

6.1.1 Constructors

public MonitorControl()
The default constructor.

6.1.2 Methods

public static MonitorControl136 getMonitorControl()
Return the system default monitor control policy.

public static MonitorControl136
getMonitorControl(java.lang.Object
monitor)

Return the monitor control policy for the given object.

public static void setMonitorControl(MonitorControl136
policy)

Control the default monitor behavior for object monitors used by synchro-
nized statements and methods in the system. The type of the policy object
determines the type of behavior. Conforming implementations must sup-
port priority ceiling emulation and priority inheritance for fixed priority
preemptive threads.

Parameters:
policy - The new monitor control policy. If null nothing happens.

public static void setMonitorControl(java.lang.Object
monitor, MonitorControl136 monCtl)

Has the same effect as setMonitorControl(), except that the policy only
affects the indicated object monitor.

Parameters:
monitor - The monitor for which the new policy will be in use. The

policy will take effect on the first attempt to lock the monitor
after the completion of this method. If null nothing will happen.

CHAPTER 6 SYNCHRONIZATION

138

policy - The new policy for the object. If null nothing will happen.

6.2 PriorityCeilingEmulation

Declaration :
public class PriorityCeilingEmulation extends MonitorControl136

Description :
Monitor control class specifying use of the priority ceiling emulation protocol for
monitor objects. Objects under the influence of this protocol have the effect that a
thread entering the monitor has its effective priority —- for priority-based dispatching
—- raised to the ceiling on entry, and is restored to its previous effective priority when
it exits the monitor. See also MonitorControl136 and PriorityInheritance138 .

6.2.1 Constructors

public PriorityCeilingEmulation(int ceiling)
Create a PriorityCeilingEmulation object with a given ceiling.

Parameters:
ceiling - Priority ceiling value.

6.2.2 Methods

public int getDefaultCeiling()
Get the priority ceiling for this PriorityCeilingEmulation object.

6.3 PriorityInheritance

Declaration :
public class PriorityInheritance extends MonitorControl136

Description :
Monitor control class specifying use of the priority inheritance protocol for object
monitors. Objects under the influence of this protocol have the effect that a thread
entering the monitor will boost the effective priority of the thread in the monitor to its
own effective priority. When that thread exits the monitor, its effective priority will be
restored to its previous value. See also MonitorControl136 and
PriorityCeilingEmulation138

WAITFREEWRITEQUEUE

139

6.3.1 Constructors

public PriorityInheritance()

6.3.2 Methods

public static PriorityInheritance138 instance()
Return a pointer to the singleton PriorityInheritance.

6.4 WaitFreeWriteQueue

Declaration :
public class WaitFreeWriteQueue

Description :
The wait-free queue classes facilitate communication and synchronization between
instances of RealtimeThread23 and java.lang.Thread . The problem is that
synchronized access objects shared between real-time threads and threads might
cause the real-time threads to incur delays due to execution of the garbage collector.

The write method of this class does not block on an imagined queue-full
condition variable. If the write() method is called on a full queue false is returned. If
two real-time threads intend to read from this queue they must provide their own
synchronization.

The read() method of this queue is synchronized and may be called by more
than one writer and will block on queue empty.

6.4.1 Constructors

public WaitFreeWriteQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryArea77 memory)
throws IllegalArgumentException, Instantia
tionException, ClassNotFoundException, Ill
egalAccessException

A queue with an unsynchronized and nonblocking write() method and a
synchronized and blocking read() method.

Parameters:
writer - An instance of java.lang.Thread .

CHAPTER 6 SYNCHRONIZATION

140

reader - An instance of java.lang.Thread .

maximum - The maximum number of elements in the queue.

memory - The MemoryArea77 in which this object and internal
elements are allocated.

Throws:
IllegalAccessException, ClassNotFoundException,

InstantiationException, IllegalArgumentException

6.4.2 Methods

public void clear()
Set this to empty.

public boolean force(java.lang.Object object)
throws MemoryScopeException

Force this java.lang.Object to replace the last one. If the reader should
happen to have just removed the other java.lang.Object just as we were
updating it, we will return false. False may mean that it just saw what we
put in there. Either way, the best thing to do is to just write again —- which
will succeed, and check on the readers side for consecutive identical read
values.

Returns: True if the queue was full, object was enqueued, and the last
entry was overwritten with object

Throws:
MemoryScopeException216

public boolean isEmpty()
Used to determine if this is empty.

Returns: True if this is empty and false if this is not empty.

public boolean isFull()
Used to determine if this is full.

Returns: True if this is full and false if this is not full.

public java.lang.Object read()

WAITFREEREADQUEUE

141

A synchronized read on the queue.

Returns: The java.lang.Object read or null if this is empty.

public int size()
Used to determine the number of elements in this.

Returns: An integer which is the number of non-empty positions in this.

public boolean write(java.lang.Object object)
throws MemoryScopeException

Try to insert an element into the queue.

Parameters:
object - The java.lang.Object to insert.

Returns: True if the insert succeeded, false if not.

Throws:
MemoryScopeException216

6.5 WaitFreeReadQueue

Declaration :
public class WaitFreeReadQueue

Description :
The wait-free queue classes facilitate communication and synchronization between
instances of RealtimeThread23 and java.lang.Thread . The problem is that
synchronized access objects shared between real-time threads and threads might
cause the real-time threads to incur delays due to execution of the garbage collector.

The read() method of this class does not block on an imagined queue-empty
condition variable. If the read() is called on an empty queue null is returned. If two
real-time threads intend to read from this queue they must provide their own
synchronization.

The write method of this queue is synchronized and may be called by more than
one writer and will block on queue empty.

6.5.1 Constructors

public WaitFreeReadQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,

CHAPTER 6 SYNCHRONIZATION

142

MemoryArea77 memory)
throws IllegalArgumentException, Instantia
tionException, ClassNotFoundException, Ill
egalAccessException

A queue with an unsynchronized and nonblocking read() method and a
synchronized and blocking write() method. The memory areas of the
given threads are found. If these memory areas are the same the queue is
created in that memory area. If these memory areas are different the queue
is created in the memory area accessible by the most restricted thread type.

Parameters:
writer - An instance of java.lang.Thread .

reader - An instance of java.lang.Thread .

maximum - The maximum number of elements in the queue.

memory - The MemoryArea77 in which this object and internal
elements are stored.

Throws:
IllegalAccessException, ClassNotFoundException,

InstantiationException, IllegalArgumentException

public WaitFreeReadQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryArea77 memory, boolean notify)
throws IllegalArgumentException, Instantia
tionException, ClassNotFoundException, Ill
egalAccessException

A queue with an unsynchronized and nonblocking read() method and a
synchronized and blocking write() method.

Parameters:
writer - An instance of java.lang.Thread .

reader - An instance of java.lang.Thread .

maximum - The maximum number of elements in the queue.

memory - The MemoryArea77 in which this object and internal
elements are stored.

notify - Whether or not the reader is notified when data is added.

Throws:
IllegalAccessException, ClassNotFoundException,

InstantiationException, IllegalArgumentException

WAITFREEREADQUEUE

143

6.5.2 Methods

public void clear()
Set this to empty.

public boolean isEmpty()
Used to determine if this is empty.

Returns: True if this is empty and false if this is not empty.

public boolean isFull()
Used to determine if this is full.

Returns: True if this is full and false if this is not full.

public java.lang.Object read()
Returns the next element in the queue unless the queue is empty. If the
queue is empty null is returned.

public int size()
Used to determine the number of elements in this.

Returns: An integer which is the number of non-empty positions in this.

public void waitForData()
If this is empty waitForData() waits on the event until the writer inserts
data. Note that true priority inversion does not occur since the writer locks
a different object and the notify is executed by the
AsyncEventHandler183 which has noHeap characteristics.

public boolean write(java.lang.Object object)
throws MemoryScopeException

The synchronized and blocking write. This call blocks on queue full and
will wait until there is space in the queue.

Parameters:
object - The java.lang.Object that is placed in this.

Throws:
MemoryScopeException216

CHAPTER 6 SYNCHRONIZATION

144

6.6 WaitFreeDequeue

Declaration :
public class WaitFreeDequeue

Description :
The wait-free queue classes facilitate communication and synchronization between
instances of RealtimeThread23 and java.lang.Thread . See
WaitFreeWriteQueue139 or WaitFreeReadQueue141 for more details. Instances
of this class create a WaitFreeWriteQueue139 and a WaitFreeReadQueue141 and
make calls on the respective read() and write() methods.

6.6.1 Constructors

public WaitFreeDequeue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryArea77 area)
throws IllegalArgumentException, IllegalAc
cessException, ClassNotFoundException, Ins
tantiationException

A queue with unsynchronized and nonblocking read() and write() meth-
ods and synchronized and blocking read()and write() methods.

Parameters:
writer - An instance of Thread.

reader - An instance of Thread.

maximum - Then maximum number of elements in the both the
WaitFreeReadQueue141 and the WaitFreeWriteQueue139 .

area - The MemoryArea77 in which this object and internal
elements are allocated.

Throws:
InstantiationException, ClassNotFoundException,

IllegalAccessException, IllegalArgumentException

6.6.2 Methods

public java.lang.Object blockingRead()

WAITFREEDEQUEUE

145

A synchronized call of the read() method of the underlying
WaitFreeWriteQueue139 . This call blocks on queue empty and will wait
until there is an element in the queue to return.

Returns: An java.lang.Object from this.

public boolean blockingWrite(java.lang.Object object)
throws MemoryScopeException

A synchronized call of the write() method of the underlying
WaitFreeReadQueue141 . This call blocks on queue full and waits until
there is space in this.

Parameters:
object - The java.lang.Object to place in this.

Returns: True if object is now in this.

Throws:
MemoryScopeException216

public boolean force(java.lang.Object object)
If this is full then this call overwrites the last object written to this with the
given object. If this is not full this call is equivalent to the nonBlocking-
Write() call.

Parameters:
object - The java.lang.Object which will overwrite the last

object if this is full. Otherwise object will be placed in this.

public java.lang.Object nonBlockingRead()
An unsynchronized call of the read() method of the underlying
WaitFreeReadQueue141 .

Returns: A java.lang.Object object read from this. If there are no
elements in this then null is returned.

public boolean nonBlockingWrite(java.lang.Object object)
throws MemoryScopeException

An unsynchronized call of the write() method of the underlying
WaitFreeWriteQueue139 . This call does not block on queue full.

Parameters:
object - The java.lang.Object to attempt to place in this.

CHAPTER 6 SYNCHRONIZATION

146

Returns: True if the object is now in this, otherwise returns false.

Throws:
MemoryScopeException216

TIME

147

C h a p t e r 7
Time

This section contains classes that:

• Allow description of a point in time with up to nanosecond accuracy and preci-
sion (actual accuracy and precision is dependent on the precision of the underly-
ing system).

• Allow distinctions between absolute points in time, times relative to some starting
point, and a new construct, rational time, which allows the efficient expression of
occurrences per some interval of relative time.

The time classes required by the specification are HighResolutionTime,
AbsoluteTime, RelativeTime, and RationalTime.

Instances of HighResolutionTime are not created, as the class exists to provide
an implementation of the other three classes. An instance of AbsoluteTime
encapsulates an absolute time expressed relative to midnight January 1, 1970 GMT.
An instance of RelativeTime encapsulates a point in time that is relative to some
other time value. Instances of RationalTime express a frequency by a numerator of
type long (the frequency) and a denominator of type RelativeTime. If instances of
RationalTime are given to certain constructors or methods the activity occurs for
frequency times every interval. For example, if a PeriodicTimer is given an instance
of RationalTime of (29,232) then the system will guarantee that the timer will fire
exactly 29 times every 232 milliseconds even if the system has to slightly adjust the
time between firings.

CHAPTER 7 TIME

148

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

1. All time objects must maintain nanosecond precision and report their values in
terms of millisecond and nanosecond constituents.

2. Time objects must be constructed from other time objects, or from millisecond/
nanosecond values.

3. Time objects must provide simple addition and subtraction operations, both for
the entire object and for constituent parts.

4. Time objects must implement the Comparable interface if it is available. The
compareTo() method must be implemented even if the interface is not available.

5. Any method of constructor that accepts a RationalTime of (x,y) must guarantee
that its activity occurs exactly x times in every y milliseconds even if the intervals
between occurrences of the activity have to be adjusted slightly. The RTSJ does
not impose any required distribution on the lengths of the intervals but strongly
suggests that implementations attempt to make them of approximately equal
lengths.

Rationale

Time is the essence of real-time systems, and a method of expressing absolute time
with sub-millisecond precision is an absolute minimum requirement. Expressing time
in terms of nanoseconds has precedent and allows the implementation to provide
time-based services, such as timers, using whatever precision it is capable of while the
application requirements are expressed to an arbitrary level of precision.

The expression of millisecond and nanosecond constituents is consistent with
other Java interfaces.

The expression of relative times allows for time-based metaphors such as
deadline-based periodic scheduling where the cost of the task is expressed as a
relative time and deadlines are usually represented as times relative to the beginning
of the period.

7.1 HighResolutionTime

Declaration :
public abstract class HighResolutionTime implements

HIGHRESOLUTIONTIME

149

java.lang.Comparable

All Implemented Interfaces: java.lang.Comparable

Direct Known Subclasses: AbsoluteTime152, RelativeTime156

Description :
Class HighResolutionTime is the base class for AbsoluteTime, RelativeTime,
RationalTime.

7.1.1 Methods

public abstract AbsoluteTime152 absolute(Clock166 clock)
Convert this time to an absolute time, relative to some clock. Convenient
for situations where you really need an absolute time. Allocates a destina-
tion object if necessary. See the derived class comments for more specific
information.

Parameters:
clock - This clock is used to convert this time into absolute time.

public abstract AbsoluteTime152 absolute(Clock166 clock,
AbsoluteTime152 dest)

Convert this time to an absolute time, relative to some clock. Convenient
for situations where you really need an absolute time. Allocates a destina-
tion object if necessary. See the derived class comments for more specific
information.

Parameters:
clock - This clock is used to convert this time into absolute time.

dest - If null, a new object is created and returned as result, else dest
is returned.

public int compareTo(HighResolutionTime148 time)
Compares this HighResolutionTime with the specified HighResolution-
Time.

Parameters:
time - compares with this time.

public int compareTo(java.lang.Object object)

CHAPTER 7 TIME

150

For the Comparable interface.

Specified By: java.lang.Comparable.compareTo(java.lang.Object) in
interface java.lang.Comparable

public boolean equals(HighResolutionTime148 time)
Returns true if the argument object has the same values as this.

Parameters:
time - Values are compared to this.

public boolean equals(java.lang.Object object)
Returns true if the argument is a HighResolutionTime reference and has the
same values as this.

Overrides: java.lang.Object.equals(java.lang.Object) in class
java.lang.Object

Parameters:
object - Values are compared to this.

public final long getMilliseconds()
Returns the milliseconds component of this.

Returns: The milliseconds component of the time past the epoch
represented by this.

public final int getNanoseconds()
Returns nanoseconds component of this.

public int hashCode()
Overrides: java.lang.Object.hashCode() in class java.lang.Object

public abstract RelativeTime156 relative(Clock166 clock)
Change the association of this from the currently associated clock to the
given clock.

public abstract RelativeTime156 relative(Clock166 clock,
HighResolutionTime148 time)

HIGHRESOLUTIONTIME

151

Convert the given instance of HighResolutionTime to an instance of
RelativeTime relative to the given instance of Clock.

public void set(HighResolutionTime148 time)
Changes the time represented by the argument to some time between the
invocation of the method and the return of the method.

Parameters:
time - The HighResolutionTime which will be set to represent the

current time.

public void set(long millis)
Sets the millisecond component of this to the given argument.

Parameters:
millis - This value will be the value of the millisecond component

of this at the completion of the call. If millis is negative the
millisecond value of this is set to negative value. Although
logically this may represent time before the epoch, invalid
results may occur if a HighResolutionTime representing time
before the epoch is given as a parameter to the methods.

public void set(long millis, int nanos)
Sets the millisecond and nanosecond components of this.

Parameters:
millis - Value to set millisecond part of this. If millis is negative

the millisecond value of this is set to negative value. Although
logically this may represent time before the epoch, invalid
results may occur if a HighResolutionTime representing time
before the epoch is given as a parameter to the methods.

nanos - Value to set nanosecond part of this. If nanos is negative the
millisecond value of this is set to negative value. Although
logically this may represent time before the epoch, invalid
results may occur if a HighResolutionTime representing time
before the epoch is given as a parameter to the methods.

public static void waitForObject(java.lang.Object target,
HighResolutionTime148 time)
throws InterruptedException

CHAPTER 7 TIME

152

Behaves exactly like target.wait() but with the enhancement that it
waits with a precision of HighResolutionTime

Parameters:
target - The object on which to wait. The current thread must have

a lock on the object.

time - The time for which to wait. If this is RelativeTime(0,0)
then wait indefinitely.

Throws:
InterruptedException - If another threads interrupts this thread

while its waiting.

See Also: java.lang.Object.wait(long),
java.lang.Object.wait(long),
java.lang.Object.wait(long, int)

7.2 AbsoluteTime

Declaration :
public class AbsoluteTime extends HighResolutionTime148

All Implemented Interfaces: java.lang.Comparable

Description :
An object that represents a specific point in time given by milliseconds plus
nanoseconds past the epoch (January 1, 1970, 00:00:00 GMT). This representation
was designed to be compatible with the standard Java representation of an absolute
time in the java.util.Date class.

If the value of any of the millisecond or nanosecond fields is negative the variable
is set to negative value. Although logically this may represent time before the epoch,
invalid results may occur if an instance of AbsoluteTime representing time before the
epoch is given as a parameter to the a method. For add and subtract negative values
behave just like they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

7.2.1 Constructors

public AbsoluteTime()

ABSOLUTETIME

153

Equal to new AbsoluteTime(0,0).

public AbsoluteTime(AbsoluteTime152 time)
Make a new AbsoluteTime object from the given AbsoluteTime object.

Parameters:
time - The AbsoluteTime object as the source for the copy.

public AbsoluteTime(java.util.Date date)
Equivalent to new AbsoluteTime (date.getTime(),0)

Parameters:
date - The java.util.Data representation of the time past the epoch

public AbsoluteTime(long millis, int nanos)
Construct an AbsoluteTime object which means a time millis milliseconds
plus nanos nanoseconds past 00:00:00 GMT on January 1, 1970.

Parameters:
millis - The milliseconds component of the time past the epoch

nanos - The nanosecond component of the time past the epoch

7.2.2 Methods

public AbsoluteTime152 absolute(Clock166 clock)
Convert this time to an absolute time relative to a given clock.

Overrides: public abstract AbsoluteTime152 absolute(Clock166
clock)149 in class HighResolutionTime148

Parameters:
clock - Clock on which this is based

Returns: this

public AbsoluteTime152 absolute(Clock166 clock,
AbsoluteTime152 destination)

Convert this time to an absolute time. For an AbsoluteTime, this is really
easy: it just return itself. Presumes that this time is already relative to the
given clock.

CHAPTER 7 TIME

154

Overrides: public abstract AbsoluteTime152 absolute(Clock166
clock, AbsoluteTime152 dest)149 in class
HighResolutionTime148

Parameters:
clock - Clock on which this is based

destination - Converted to an absolute time

Returns: this

public AbsoluteTime152 add(long millis, int nanos)
Add millis and nanos to this. A new object is allocated for the result

Parameters:
millis - the milliseconds value to be added to this

nanos - the nanoseconds value to be added to this

Returns: the result after adding this with millis and nanos.

public AbsoluteTime152 add(long millis, int nanos,
AbsoluteTime152 destination)

If a destination is non-null, the result is placed there and the destination is
returned. Otherwise a new object is allocated for the result.

Parameters:
millis - milliseconds

nanos - nanoseconds

Returns: the result

public final AbsoluteTime152 add(RelativeTime156 time)
Return this + time. A new object is allocated for the result.

Parameters:
time - the time to add to this

Returns: the result

public AbsoluteTime152 add(RelativeTime156 time,
AbsoluteTime152 destination)

Return this + time. If destination is non-null, the result is placed there and
destination is returned. Otherwise a new object is allocated for the result.

ABSOLUTETIME

155

Parameters:
time - the time to add to this

destination - to place the result in

Returns: the result

public java.util.Date getDate()
Returns: The time past the epoch represented by this as a java.util.Date.

public RelativeTime156 relative(Clock166 clock)
Change the association of this from the currently associated clock to the
given clock.

Overrides: public abstract RelativeTime156 relative(Clock166
clock)150 in class HighResolutionTime148

public RelativeTime156 relative(Clock166 clock,
AbsoluteTime152 destination)

Convert the given instance of RelativeTime to an instance of Relative-
Time relative to the given instance of Clock.

public void set(java.util.Date date)
Change the time represented by this.

Parameters:
date - java.util.Date which becomes the time represented by this

after the completion of this method.

public final RelativeTime156 subtract(AbsoluteTime152 time)
Parameters:

time - absolute time to subtract from this

Returns: this-time. A new object is allocated for the result.

public final RelativeTime156 subtract(AbsoluteTime152 time,
RelativeTime156 destination)

Parameters:
time - absolute time to subtract from this

destination - place to store the result. New object allocated if null

CHAPTER 7 TIME

156

Returns: this-time. A new object is allocated for the result.

public final AbsoluteTime152 subtract(RelativeTime156 time)
Parameters:

time - relative time to subtract from this

Returns: this-time. A new object is allocated for the result.

public AbsoluteTime152 subtract(RelativeTime156 time,
AbsoluteTime152 destination)

Parameters:
time - relative time to subtract from this

destination - place to store the result. New object allocated if null

Returns: this-time. A new object is allocated for the result.

public java.lang.String toString()
Return a printable version of this time, in a format that matches
java.util.Date.toString() with a postfix to the detail the sub-second value

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: String object converted from this.

7.3 RelativeTime

Declaration :
public class RelativeTime extends HighResolutionTime148

All Implemented Interfaces: java.lang.Comparable

Direct Known Subclasses: RationalTime160

Description :
An object that represents a time interval millis/1E3+nanos/1E9 seconds long. It
generally is used to represent a time relative to now.

If the value of any of the millisecond or nanosecond fields is negative the variable
is set to negative value. Although logically this may represent time before the epoch,
invalid results may occur if an instance of RelativeTime representing time before the
epoch is given as a parameter to the a method. For add and subtract negative values
behave just like they do in arithmetic.

RELATIVETIME

157

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

7.3.1 Constructors

public RelativeTime()
Equivalent to new RelativeTime(0,0)

public RelativeTime(long millis, int nanos)
Construct a RelativeTime object which means a time millis milliseconds
plus nanos nanoseconds past the Clock time.

Parameters:
millis - The milliseconds component of the time past the Clock

time

nanos - The nanoseconds component of the time past the Clock time

public RelativeTime(RelativeTime156 time)
Make a new RelativeTime object from the given RelativeTime object

Parameters:
time - The RelativeTime object used as the source for the copy

7.3.2 Methods

public AbsoluteTime152 absolute(Clock166 clock)
Overrides: public abstract AbsoluteTime152 absolute(Clock166

clock)149 in class HighResolutionTime148

public AbsoluteTime152 absolute(Clock166 clock,
AbsoluteTime152 destination)

Convert this time to an absolute time. For a RelativeTime, this involved
adding the clocks notion of now to this interval and constructing a new
AbsoluteTime based on the sum

Overrides: public abstract AbsoluteTime152 absolute(Clock166
clock, AbsoluteTime152 dest)149 in class
HighResolutionTime148

CHAPTER 7 TIME

158

Parameters:
clock - if null, Clock.getRealTimeClock() is used

public RelativeTime156 add(long millis, int nanos)
Add a specific number of milli and nano seconds to this. A new object is
allocated

Parameters:
millis - milli seconds to add

nanos - nano seconds to add

Returns: A new object containing the result

public RelativeTime156 add(long millis, int nanos,
RelativeTime156 destination)

Add a specific number of milli and nano seconds to this. A new object is
allocated if destination is null, otherwise store there.

Parameters:
millis - milli seconds to add

nanos - nano seconds to add

destination - to store the result

Returns: A new object containing the result

public final RelativeTime156 add(RelativeTime156 time)
Return this + time. A new object is allocated for the result.

Parameters:
time - the time to add to this

Returns: the result

public RelativeTime156 add(RelativeTime156 time,
RelativeTime156 destination)

Return this + time. If destination is non-null, the result is placed there and
dest is returned. Otherwise a new object is allocated for the result.

Parameters:
time - the time to add to this

destination - to place the result in

Returns: the result

RELATIVETIME

159

public void addInterarrivalTo(AbsoluteTime152 destination)
Add this time to an AbsoluteTime. It is almost the same dest.add(this, dest)
except that it accounts for(ie. divides by) the frequency. If destination is
equal to null, NullPointerException is thrown.

Parameters:

public RelativeTime156 getInterarrivalTime()
Return the interarrival time that is the result of dividing this interval by its
frequency. For a RelativeTime, and RationalTime160 s with a frequency
of 1, it just returns this. The interarrival time is necessarily an approxima-
tion.

public RelativeTime156 getInterarrivalTime(RelativeTime156
destination)

Return the interarrival time that is the result of dividing this interval by its
frequency. For a RelativeTime, or a RationalTime with a frequency of 1
it just returns this. The interarrival time is necessarily an approximation.

Parameters:
destination - interarrival time is between this and the destination

Returns: interarrival time

public RelativeTime156 relative(Clock166 clock)
Change the association of this from the currently associated clock to the
given clock.

Overrides: public abstract RelativeTime156 relative(Clock166
clock)150 in class HighResolutionTime148

public RelativeTime156 relative(Clock166 clock,
RelativeTime156 destination)

Set the time of this to the time of the given instance of RelativeTime with
respect to the given instance of Clock.

public final RelativeTime156 subtract(RelativeTime156 time)
Parameters:

time - relative time to subtract from this

Returns: this-time. A new object is allocated for the result.

CHAPTER 7 TIME

160

public RelativeTime156 subtract(RelativeTime156 time,
RelativeTime156 destination)

Parameters:
time - relative time to subtract from this

destination - place to store the result. New object allocated if null

Returns: this-time. A new object is allocated for the result.

public java.lang.String toString()
Return a printable version of this time. Overrides:
java.lang.Object.toString() in class java.lang.Object

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: String a printable version of this time.

7.4 RationalTime

Declaration :
public class RationalTime extends RelativeTime156

All Implemented Interfaces: java.lang.Comparable

Description :
An object that represents a time interval millis/1E3+nanos/1E9 seconds long that is
divided into subintervals by some frequency. This is generally used in periodic events,
threads, and feasibility analysis to specify periods where there is a basic period that
must be adhered to strictly (the interval), but within that interval the periodic events
are supposed to happen frequency times, as uniformly spaced as possible, but clock
and scheduling jitter is moderately acceptable.

If the value of any of the millisecond or nanosecond fields is negative the variable
is set to negative value. Although logically this may represent time before the epoch,
invalid results may occur if an instance of AbsoluteTime representing time before the
epoch is given as a parameter to the a method.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level. All
Implemented Interfaces: java.lang.Comparable

RATIONALTIME

161

7.4.1 Constructors

public RationalTime(int frequency)
Construct a new Object of RationalTime Equivalent to new Rational-
Time(1000, 0, frequency) —- essentially a cycles -per-second value

public RationalTime(int frequency, long millis,
int nanos)
throws IllegalArgumentException

Construct a new Object of RationalTime. All arguments must be >= 0.

Parameters:
frequency - The frequency value of this

millis - The milliseonds value of this

nanos - The nanoseconds value of this

Throws:
IllegalArgumentException

public RationalTime(int frequency,
RelativeTime156 interval)
throws IllegalArgumentException

Construct a new Object of RationalTime from the given RelativeTime

Parameters:
frequency - The frequency value of this

interval - The relativeTime object used as the source for the copy

Throws:
IllegalArgumentException

7.4.2 Methods

public AbsoluteTime152 absolute(Clock166 clock,
AbsoluteTime152 destination)

Convert this time to an absolute time. For a RelativeTime, this involved
adding the clocks notion of now to this interval and constructing a new
AbsoluteTime based on the sum

CHAPTER 7 TIME

162

Overrides: public AbsoluteTime152 absolute(Clock166 clock,
AbsoluteTime152 destination)157 in class
RelativeTime156

Parameters:
clock - if null, Clock.getRealTimeClock() is used

public void addInterarrivalTo(AbsoluteTime152 destination)
Add this time to an AbsoluteTime152 . It is almost the same dest.add(this,
dest) except that it accounts for(ie. divides by) the frequency.

Overrides: public void addInterarrivalTo(AbsoluteTime152
destination)159 in class RelativeTime156

Parameters:

public int getFrequency()
Return the frquency of this.

public RelativeTime156 getInterarrivalTime()
Gets the time duration between two consecutive ticks using frequency

Overrides: public RelativeTime156 getInterarrivalTime()159 in
class RelativeTime156

public RelativeTime156 getInterarrivalTime(RelativeTime156
dest)

Gets the time duration between two consecutive ticks using frequency

Overrides: public RelativeTime156
getInterarrivalTime(RelativeTime156
destination)159 in class RelativeTime156

Parameters:
dest - Result is stored in dest and returned, if null new object is

returned.

public void set(long millis, int nanos)
throws IllegalArgumentException

Change the indicated interval of this to the sum of the values of the argu-
ments

RATIONALTIME

163

Overrides: public void set(long millis, int nanos)151 in class
HighResolutionTime148

Parameters:
millis - Millisecond part.

nanos - Nanosecond part.

Throws:
IllegalArgumentException

public void setFrequency(int frequency)
throws ArithmeticException

Set the frequency of this.

Parameters:
frequency - the frequency to be set for this

Throws:
ArithmeticException

CHAPTER 7 TIME

164

TIMERS

165

C h a p t e r 8
Timers

This section contains classes that:

• Allow creation of a timer whose expiration is either periodic or set to occur at a
particular time as kept by a system-dependent time base (clock).

• Trigger some behavior to occur on expiration of a timer, using the asynchronous
event mechanisms provided by the specification.

The classes provided by this section are Clock, Timer, PeriodicTimer, and
OneShotTimer.

An instance of the Clock class is provided by the implementation. There is
normally one clock provided, the system real-time clock. This object provides the
mechanism for triggering behavior on expiration of a timer. It also reports the
resolution of timers provided by the implementation.

An instance of PeriodicTimer fires an AsyncEvent at constant intervals.

An instance of OneShotTimer describes an event that is to be triggered exactly
once at either an absolute time, or at a time relative to the creation of the timer. It may
be used as the source for timeouts.

Instances of Timer are not used. The Timer class provides the interface and
underlying implementation for both one-shot and periodic timers.

CHAPTER 8 TIMERS

166

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

1. The Clock class shall be capable of reporting the achievable resolution of timers
based on that clock.

2. The OneShotTimer class shall ensure that a one-shot timer is triggered exactly
once, regardless of whether or not the timer is enabled after expiration of the indi-
cated time.

3. The PeriodicTimer class shall allow the period of the timer to be expressed in
terms of a RelativeTime or a RationalTime. In the latter case, the implementa-
tion shall provide a best effort to perform any correction necessary to maintain the
frequency at which the event occurs.

4. If a periodic timer is enabled after expiration of the start time, the first event shall
occur immediately and thus mark the start of the first period.

Rationale

The importance of the use of one-shot timers for timeout behavior and the vagaries in
the execution of code prior to enabling the timer for short timeouts dictate that the
triggering of the timer should be guaranteed. The problem is exacerbated for periodic
timers where the importance of the periodic triggering outweighs the precision of the
start time. In such cases, it is also convenient to allow, for example, a relative time of
zero to be used as the start time for relative timers.

In many situations, it is important that a periodic task be represented as a
frequency and that the period remain synchronized. In these cases, a relatively simple
correction can be enforced by the implementation at the expense of some additional
overhead for the timer.

8.1 Clock

Declaration :
public abstract class Clock

Description :
A clock advances from the past, through the present, into the future. It has a concept
of now that can be queried through Clock.getTime(), and it can have events queued on

CLOCK

167

it which will be fired when their appointed time is reached. There are many possible
subclasses of clocks: real-time clocks, user time clocks, simulation time clocks. The
idea of using multiple clocks may at first seem unusual but we allow it as a possible
resource allocation strategy. Consider a real-time system where the natural events of
the system have different tolerances for jitter (jitter refers to the distribution of the
differences between when the events are actually raised or noticed by the software and
when they should have really occurred according to time in the real-world). Assume
the system functions properly if event A is noticed or raised within plus or minus 100
seconds of the actual time it should occur but event B must be noticed or raised within
100 microseconds of its actual time. Further assume, without loss of generality, that
events A and B are periodic. An application could then create two instances of
PeriodicTimer based on two clocks. The timer for event B should be based on a Clock
which checks its queue at least every 100 microseconds but the timer for event A
could be based on a Clock that checked its queue only every 100 seconds. This use of
two clocks reduces the queue size of the accurate clock and thus queue management
overhead is reduced.

8.1.1 Constructors

public Clock()

8.1.2 Methods

public static Clock166 getRealtimeClock()
There is always one clock object available: a realtime clock that advances
in sync with the external world> This is the default Clock.

Returns: an instance of the default Clock

public abstract RelativeTime156 getResolution()
Return the resolution of the clock —- the interval between ticks.

Returns: A RelativeTime object representing the resolution of this

public AbsoluteTime152 getTime()
Return the current time in a freshly allocated object.

Returns: An AbsoluteTime object representing the current time.

public abstract void getTime(AbsoluteTime152 time)

CHAPTER 8 TIMERS

168

Return the current time in an existing object. The time represented by the
given AbsoluteTime is changed some time between the invocation of the
method and the return of the method

Parameters:
time - The AbsoluteTime object which will have its time changed. if

null then nothing happens.

public abstract void setResolution(RelativeTime156
resolution)

Set the resolution of this. For some hardware clocks setting resolution
impossible and if called on those nothing happens.

Parameters:
resolution - The new resolution of this

8.2 Timer

Declaration :
public abstract class Timer extends AsyncEvent181

Direct Known Subclasses: OneShotTimer170, PeriodicTimer171

Description :
A Timer is a timed event that measures time relative to a given Clock. This class
defines basic functionality available to all timers. Applications will generally use
either PeriodicTimer to create an event that is fired repeatedly at regular intervals, or
OneShotTimer for an event that just fires once at a specific time. A timer is always
based on a Clock, which provides the basic facilities of something that ticks along
following some time line (real-time, cpu-time, user-time, simulation-time, etc.). All
timers are created disabled and do nothing until start() is called.

8.2.1 Constructors

protected Timer(HighResolutionTime148 t, Clock166 c,
AsyncEventHandler183 handler)

Create a timer that fires at time t, according to Clock c and is handled by
the specified handler

Parameters:
t - The time to fire the event, Will be converted to absolute time.

TIMER

169

c - The clock on which to base this time. If null, the system realtime
clock is used.

handler - The default handler to use for this event. If null, no
handler is associated with it and nothing will happen when this
event fires until a handler is provided

8.2.2 Methods

public ReleaseParameters54 createReleaseParameters()
Create a ReleaseParameters54 block appropriate to the timing charac-
teristics of this event. The default is the most pessimistic:
AperiodicParameters59 . This is typically called by code that is setting
up a handler for this event that will fill in the parts of the release parameters
that it knows the values for, like cost.

Overrides: public ReleaseParameters54
createReleaseParameters()182 in class AsyncEvent181

Returns: An instance of ReleaseParameters.

public void destroy()
Stop this from counting and return as many of its resources as possible
back to the system.

public void disable()
Disable this timer, preventing it from firing. It may subsequently be re-
enabled. If the timer is disabled when its fire time occurs then it will not
fire. However, a disabled timer continues to count while it is disabled and if
it is subsequently reabled before its fire time occures and is enabled when
its fire time occurs it will fire. However, it is important to note that this
method does not delay the time before a possible firing. For example, if the
timer is set to fire at time 42 and the disable() is called at time 30 and
enable() is called at time 40 the firing will occur at time 42 (not time 52).
These semantics imply also, that firings are not queued. Using the above
example, if enable was called at time 43 no firing will occur, since at time
42 this was disabled.

public void enable()
Re-enable this timer after it has been disabled. See Timer.disable()

CHAPTER 8 TIMERS

170

public Clock166 getClock()
Return the Clock that this timer is based on

Returns: clock The clock of this timer based on

public AbsoluteTime152 getFireTime()
Get the time at which this event will fire

Returns: an AbsoluteTime object representing the absolute time at which
this will fire.

public boolean isRunning()
Tests this to determine if this and been started and is in a state (enabled)
such that when the given time occurs it will fire the event.

Returns: True if the timer has been started and is in the enabled state.
False, if the timer has either not been started, started and is in the
disabled state, or started and stopped.

public void reschedule(HighResolutionTime148 time)
Change the scheduled time for this event. can take either absolute or rela-
tive times.

Parameters:
t - the time to reschedule for this event firing if t is null, the previous

fire time is still the time at which this will fire.

public void start()
A Timer starts measuring time from when it is started

public boolean stop()
Stops a timer that is running and changes its state to not started.

Returns: True, if this was started and enabled and stops this. The new state
of this is not started. False, if this was not started or disabled.
The state of this is not changed.

8.3 OneShotTimer

Declaration :
public class OneShotTimer extends Timer168

PERIODICTIMER

171

Description :
A timed AsyncEvent that is driven by a clock. It will fire off once, when the clock
time reaches the timeout time. If the clock time has already passed the timeout time, it
will fire immediately.

8.3.1 Constructors

public OneShotTimer(HighResolutionTime148 time,
AsyncEventHandler183 handler)

Create an instance of AsyncEvent that will execute its fire method at the
expiration of the given time.

Parameters:
time - - After timeout time units from ’now’ fire will be executed

handler - - The AsyncEventHandler that will be scheduled when
fire is executed

public OneShotTimer(HighResolutionTime148 start,
Clock166 clock, AsyncEventHandler183 handler)

Create an instance of AsyncEvent, based on the given clock, that will exe-
cute its fire method at the expiration of the given time.

Parameters:
start - start time for timer

clock - The timer will increment based on this clock

handler - The AsyncEventHandler that will be scheduled when fire
is executed

8.4 PeriodicTimer

Declaration :
public class PeriodicTimer extends Timer168

Description :
An AsyncEvent whose fire method is executed periodically according to the given
parameters. If a clock is given, calculation of the period uses the increments of the
clock. If an interval is given or set the system guarantees that the fire method will
execute interval time units after the last execution or its given start time as
appropriate. If one of the HighResolutionTime argument types is RationalTime then
the system guarantees that the fire method will be executed exactly frequency times

CHAPTER 8 TIMERS

172

every unit time (see RationalTime constructors) by adjusting the interval between
executions of fire(). This is similar to a thread with PeriodicParameters except that it
is lighter weight. If a PeriodicTimer is disabled, it still counts, and if enabled at some
later time, it will fire at its next scheduled fire time.

8.4.1 Constructors

public PeriodicTimer(HighResolutionTime148 start,
RelativeTime156 interval,
AsyncEventHandler183 handler)

Create an instance of AsyncEvent that executes its fire method periodia-
cally

Parameters:
start - The time when the first interval begins

interval - The time between successive executions of the fire
method

handler - The instance of AsyncEventHandler that will be
scheduled each time the fire method is exceuted

public PeriodicTimer(HighResolutionTime148 start,
RelativeTime156 interval, Clock166 clock,
AsyncEventHandler183 handler)

Create an instance of AsyncEvent that executes its fire method periodically

Parameters:
start - The time when the first interval begins

interval - The time between successive executions of the fire
method

clock - The clock whose increments are used to calculate the
interval

handler - The instance of AsyncEventHandler that will be
scheduled each time the fire method is executed

8.4.2 Methods

public ReleaseParameters54 createReleaseParameters()

PERIODICTIMER

173

Create a ReleaseParameters54 object with the next fire time as the start
time and the interval of this as the period.

Overrides: public ReleaseParameters54
createReleaseParameters()169 in class Timer168

Returns: an instance of ReleaseParameters object

public void fire()
Causes the instance of the superclass AsyncEvent181 to occur now.

Overrides: public void fire()182 in class AsyncEvent181

public AbsoluteTime152 getFireTime()
Return the next time at which this will fire.

Overrides: public AbsoluteTime152 getFireTime()170 in class
Timer168

public RelativeTime156 getInterval()
Return the interval of this Timer

Returns: a RelativeTime object which is the current interval of this

public void setInterval(RelativeTime156 interval)
Reset the interval of this Timer

Parameters:
interval - A RelativeTime object which is the interval to reset this

Timer

CHAPTER 8 TIMERS

174

ASYNCHRONY

175

C h a p t e r 9
Asynchrony

This section contains classes that:

• Provide mechanisms that bind the execution of program logic to the occurrence
of internal and external events.

• Provide mechanisms that allow the asynchronous transfer of control.

• Provide mechanisms that allow the asynchronous termination of threads.

This specification provides several facilities for arranging asynchronous control of
execution, some of which apply to threads in general while others apply only to real-
time threads. These facilities fall into two main categories: asynchronous event
handling and asynchronous transfer of control (ATC), which includes thread
termination.

Asynchronous event handling is captured by the non-abstract class AsyncEvent
and the abstract classes AsyncEventHandler and BoundAsyncEventHandler. An
instance of the AsyncEvent class is an object corresponding to the possibility of an
asynchronous event occurrence. An event occurrence may be initiated by either
application logic or by the occurrence of a happening external to the JVM (such as a
software signal or a hardware interrupt handler). An event occurrence is expressed in
program logic by the invocation of the fire() method of an instance of the
AsyncEvent class. The initiation of an event occurrence due to a happening is
implementation dependent.

An instance of the class AsyncEventHandler is an object embodying code that is
scheduled in response to the occurrence of an event. The run() method of an instance
of AsyncEventHandler acts like a thread, and indeed one of its constructors takes

CHAPTER 9 ASYNCHRONY

176

references to instances of SchedulingParameters, ReleaseParameters, and
MemoryParameters. However, there is not necessarily a separate thread for each
run() method. The class BoundAsyncEventHandler extends AsyncEventHandler,
and should be used if it is necessary to ensure that a handler has a dedicated thread.
An event count is maintained so that a handler can cope with event bursts —-
situations where an event is fired more frequently than its handler can respond.

The interrupt() method in java.lang.Thread provides rudimentary
asynchronous communication by setting a pollable/resettable flag in the target thread,
and by throwing a synchronous exception when the target thread is blocked at an
invocation of wait(), sleep(), or join(). This specification extends the effect of
Thread.interrupt() and adds an overloaded version in RealtimeThread, offering
a more comprehensive and non-polling asynchronous execution control facility. It is
based on throwing and propagating exceptions that, though asynchronous, are
deferred where necessary in order to avoid data structure corruption. The main
elements of ATC are embodied in the class AsynchronouslyInterruptedException
(AIE), its subclass Timed, the interface Interruptible, and in the semantics of the
interrupt methods in Thread and RealtimeThread.

A method indicates its willingness to be asynchronously interrupted by including
AIE on its throws clause. If a thread is asynchronously interrupted while executing a
method that identifies AIE on its throws clause, then an instance of AIE will be
thrown as soon as the thread is outside of a section in which ATC is deferred. Several
idioms are available for handling an AIE, giving the programmer the choice of using
catch clauses and a low-level mechanism with specific control over propagation, or a
higher-level facility that allows specifying the interruptible code, the handler, and the
result retrieval as separate methods.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable to AsyncEvent
objects. Semantics that apply to particular classes, constructors, methods, and fields
will be found in the class description and the constructor, method, and field detail
sections.

1. When an instance of AsyncEvent occurs (by either program logic or a happen-
ing), all run() methods of instances of the AsyncEventHandler class that have
been added to the instance of AsyncEvent by the execution of addHandler() are
scheduled for execution. This action may or may not be idempotent. Every occur-
rence of an event increments a counter in each associated handler. Handlers may
elect to execute logic for each occurrence of the event or not.

2. Instances of AsyncEvent and AsyncEventHandler may be created and used by
any program logic.

SEMANTICS AND REQUIREMENTS

177

3. More than one instance of AsyncEventHandler may be added to an instance of
AsyncEvent.

4. An instance of AsyncEventHandler may be added to more than one instance of
AsyncEvent.

This list establishes the semantics and requirements that are applicable to
AsynchronouslyInterruptedException. Semantics that apply to particular
classes, constructors, methods, and fields will be found in the class description and the
constructor, method, and field detail sections.

1. Instances of the class AsynchronouslyInterruptedException can be generated
by execution of program logic and by internal virtual machine mechanisms that
are asynchronous to the execution of program logic which is the target of the
exception.

2. Program logic that exists in methods that throw AsynchronouslyInterrupted-
Exception is subject to receiving an instance of AsynchronouslyInterrupted-
Exception at any time during execution except as provided below.

3. The RTSJ specifically requires that blocking methods in java.io.* must be pre-
vented from blocking indefinitely when invoked from a method with AIE in its
throws clause. The implementation, when either AIE.fire() or Realtime-
Thread.interrupt() is called when control is in a java.io.* method invoked
from an interruptible method, may either unblock the blocked call, raise an IOEx-
ception on behalf of the call, or allow the call to complete normally if the imple-
mentation determines that the call would eventually unblock.

4. Program logic executing within a synchronized block within a method with
AsynchronouslyInterruptedException in its throws clause is not subject to
receiving an instance of AIE. The interrupted state of the execution context is set
to pending and the program logic will receive the instance when control passes
out of the synchronized block if other semantics in this list so indicate.

5. Constructors are allowed to include AsynchronouslyInterruptedException in
their throws clause and will thus be interruptible.

6. A thread that is subject to asynchronous interruption (in a method that throws
AIE, but not in a synchronized block) must respond to that exception within a
bounded number of bytecodes. This worst-case response interval (in bytecode
instructions) must be documented.

Definitions
The RTSJ’s approach to ATC is designed to follow these principles. It is based on
exceptions and is an extension of the current Java language rules for
java.lang.Thread.interrupt(). The following terms and abbreviations will be
used:

CHAPTER 9 ASYNCHRONY

178

ATC - Asynchronous Transfer of Control

AIE - (Asynchronously Interrupted Exception) The class
javax.realtime.AsynchronouslyInterruptedException, a subclass of
java.lang.InterruptedException.

AI-method - (Asynchronously Interruptible) A method is said to be
asynchronously interruptible if it includes AIE in its throws clause.

ATC-deferred section - a synchronized method, a synchronized statement, or any
method or constructor without AIE in its throws clause.

Summary of Operation
In summary, ATC works as follows:

If t is an instance of RealtimeThread or NoHeapRealtimeThread and
t.interrupt() or AIE.fire() is executed by any thread in the system then:

1. If control is in an ATC-deferred section, then the AIE is put into a pending state.

2. If control is not in an ATC-deferred section, then control is transferred to the near-
est dynamically-enclosing catch clause of a try statement that handles this AIE
and which is in an ATC-deferred section. See section 11.3 of The Java Language
Specification second edition for an explanation of the terms, dynamically enclos-
ing and handles. The RTSJ uses those definitions unaltered.

3. If control is in either wait(), sleep(), or join(), the thread is awakened and the
fired AIE (which is a subclass of InterruptedException) is thrown. Then ATC
follows option 1, or 2 as appropriate.

4. If control is in a non-AI method, control continues normally until the first attempt
to return to an AI method or invoke an AI method. Then ATC follows option 1, or
2 as appropriate.

5. If control is transferred from a non-AI method to an AI method through the action
of propagating an exception and if an AIE is pending then when the transition to
the AI-method occurs the thrown exception is discarded and replaced by the AIE.

If an AIE is in a pending state then this AIE is thrown only when:

1. Control enters an AI-method.

2. Control returns to an AI-method.

3. Control leaves a synchronized block within an AI-method.

When happened() is called on an AIE or that AIE is superseded by another the first
AIE’s state is made non-pending.

An AIE may be raised while another AIE is pending or in action. Because AI code
blocks are nested by method invocation (a stack-based nesting) there is a natural

SEMANTICS AND REQUIREMENTS

179

precedence among active instances of AIE. Let AIE0 be the AIE raised when
t.interrupt() is invoked and AIEi (i = 1,...,n, for n unique instances of AIE) be the
AIE raised when AIEi.fire() is invoked. Assume stacks grow down and therefore
the phrase “a frame lower on the stack than this frame” refers to a method at a deeper
nesting level.

1. If the current AIE is an AIE0 and the new AIE is an AIEx associated with any
frame on the stack then the new AIE (AIEx) is discarded.

2. If the current AIE is an AIEx and the new AIE is an AIE0, then the current AIE
(AIEx) is replaced by the new AIE (AIE0).

3. If the current AIE is an AIEx and the new AIE is an AIEy from a frame lower on
the stack, then the new AIE (AIEy) discarded.

4. If the current AIE is an AIEx and the new AIE is an AIEy from a frame higher on
the stack, the current AIE (AIEx) is replaced by the new AIE (AIEy).

Rationale

The design of the asynchronous event handling was intended to provide the necessary
functionality while allowing efficient implementations and catering to a variety of
real-time applications. In particular, in some real-time systems there may be a large
number of potential events and event handlers (numbering in the thousands or perhaps
even the tens of thousands), although at any given time only a small number will be
used. Thus it would not be appropriate to dedicate a thread to each event handler. The
RTSJ addresses this issue by allowing the programmer to specify an event handler
either as not bound to a specific thread (the class AsyncEventHandler) or
alternatively as bound to a thread (BoundAsyncEventHandler).

Events are dataless: the fire method does not pass any data to the handler. This
was intentional in the interest of simplicity and efficiency. An application that needs
to associate data with an AsyncEvent can do so explicitly by setting up a buffer; it
will then need to deal with buffer overflow issues as required by the application.

The ability for one thread to trigger an ATC in another thread is necessary in
many kinds of real-time applications but must be designed carefully in order to
minimize the risks of problems such as data structure corruption and deadlock. There

Match No Match

Propagate == true clear the pending AIE,
return true

propagate (whether the AIE remains pending is invis-
ible except to the implementation)

Propagate == false clear the pending AIE,
return false

do not clear the pending AIE, return false

CHAPTER 9 ASYNCHRONY

180

is, invariably, a tension between the desire to cause an ATC to be immediate, and the
desire to ensure that certain sections of code are executed to completion.

One basic decision was to allow ATC in a method only if the method explicitly
permits this. The default of no ATC is reasonable, since legacy code might be written
expecting no ATC, and asynchronously aborting the execution of such a method could
lead to unpredictable results. Since the natural way to model ATC is with an exception
(AsynchronouslyInterruptedException, or AIE), the way that a method indicates
its susceptibility to ATC is by including AIE on its throws clause. Causing this
exception to be thrown in a thread t as an effect of calling t.interrupt() was a
natural extension of the semantics of interrupt as currently defined by
java.lang.Thread.

One ATC-deferred section is synchronized code. This is a context that needs to
be executed completely in order to ensure a program operates correctly. If
synchronized code were aborted, a shared object could be left in an inconsistent
state.

Constructors and finally clauses are subject to interruption. If a constructor is
aborted, an object might be only partially initialized. If a finally clause is aborted,
needed cleanup code might not be performed. It is the programmer’s responsibility to
ensure that executing these constructs does not induce unwanted ATC latency. Note
that by making synchronized code ATC-deferred, this specification avoids the
problems that caused Thread.stop() to be deprecated and that have made the use of
Thread.destroy() prone to deadlock.

A potential problem with using the exception mechanism to model ATC is that a
method with a “catch-all” handler (for example a catch clause identifying Exception
or even Throwable as the exception class) can inadvertently intercept an exception
intended for a caller. This problem is avoided by having special semantics for
catching an instance of AIE. Even though a catch clause may catch an AIE, the
exception will be propagated unless the handler invokes the happened method from
AIE. Thus, if a thread is asynchronously interrupted while in a try block that has a
handler such as

catch (Throwable e){ return; }
then the AIE instance will still be propagated to the caller.

This specification does not provide a special mechanism for terminating a thread;
ATC can be used to achieve this effect. This means that, by default, a thread cannot be
terminated; it needs to invoke methods that have AIE in their throws clauses.
Allowing termination as the default would have been questionable, bringing the same
insecurities that are found in Thread.stop() and Thread.destroy().

ASYNCEVENT

181

9.1 AsyncEvent

Declaration :
public class AsyncEvent

Direct Known Subclasses: Timer168

Description :
An asynchronous event represents something that can happen, like a light turning red.
It can have a set of handlers associated with it, and when the event occurs, the handler
is scheduled by the scheduler to which it holds a reference (see
AsyncEventHandler183 and Scheduler45).

A major motivator for this style of building events is that we expect to have lots
of events and lots of event handlers. An event handler is logically very similar to a
thread, but it is intended to have a much lower cost (in both time and space) —-
assuming that a relatively small number of events are fired and in the process of being
handled at once. AsyncEvent.fire() differs from a method call because the handler
(a) has scheduling parameters and (b) is executed asynchronously.

9.1.1 Constructors

public AsyncEvent()

9.1.2 Methods

public void addHandler(AsyncEventHandler183 handler)
Add a handler to the set of handlers associated with this event. An Async-
Event may have more than one associated handler.

Parameters:
handler - The new handler to add to the list of handlers already

associated with this. If handler is null then nothing happens.

Since this affects the constraints expressed in the release parameters
of the existing schedulable objects, this may change the
feasibility of the current schedule.

public void bindTo(java.lang.String happening)
throws UnknownHappeningException

CHAPTER 9 ASYNCHRONY

182

Binds this to an external event (a happening). The meaningful values of
happening are implementation dependent. This AsyncEvent is considered
to have occurred whenever the external event occurs.

Parameters:
happening - An implementation dependent value that binds this

AsyncEvent to some external event.

Throws:
UnknownHappeningException220 - if the happening string is not

supported by the system.

public ReleaseParameters54 createReleaseParameters()
Create a ReleaseParameters54 block appropriate to the timing charac-
teristics of this event. The default is the most pessimistic:
AperiodicParameters59 . This is typically called by code that is setting
up a handler for this event that will fill in the parts of the release parameters
that it knows the values for, like cost.

public void fire()
Fire (schedule the run() methods of) the handlers associated with this
event.

public boolean handledBy(AsyncEventHandler183 handler)
Returns true if and only if this event is handled by this handler.

Parameters:
target - The handler to be tested to determine if it is associated with

this. Returns false if target is null.

public void removeHandler(AsyncEventHandler183 handler)
Remove a handler from the set associated with this event.

Parameters:
handler - The handler to be disassociated from this. If null nothing

happens. If not already associated with this then nothing
happens.

public void setHandler(AsyncEventHandler183 handler)
Associate a new handler with this event, removing all existing handlers.

ASYNCEVENTHANDLER

183

Since this affects the constraints expressed in the release parameters of the
existing schedulable objects, this may change the feasibility of the current
schedule.

Parameters:
handler - The new and only handler to be associated with this. If

handler is null then no handler will be associated with this (i.e.,
remove all handlers).

public void unbindTo(java.lang.String happening)
throws UnknownHappeningException

Removes a binding to an external event (a happening). The meaningful val-
ues of happening are implementation dependent.

Parameters:
happening - An implementation dependent value representing some

external event to which this AsyncEvent is bound.

Throws:
UnknownHappeningException220 - if this AsyncEvent is not

bound to the given happening or the given happening string is
not supported by the system.

9.2 AsyncEventHandler

Declaration :
public class AsyncEventHandler implements Schedulable41

All Implemented Interfaces: java.lang.Runnable, Schedulable41

Direct Known Subclasses: BoundAsyncEventHandler195

Description :
An asynchronous event handler encapsulates code that gets run at some time after an
AsyncEvent181 occurs.

It is essentially a java.lang.Runnable with a set of parameter objects, making
it very much like a RealtimeThread23 . The expectation is that there may be
thousands of events, with corresponding handlers, averaging about one handler per
event. The number of unblocked (i.e., scheduled) handlers is expected to be relatively
small.

CHAPTER 9 ASYNCHRONY

184

It is guaranteed that multiple firings of an event handler will be serialized. It is
also guaranteed that (unless the handler explicitly chooses otherwise) for each firing
of the handler, there will be one execution of the handleAsyncEvent() method.

For instances of AsyncEventHandler with a release parameter of type
SporadicParameters61 have a list of release times which correspond to execution
times of AsyncEvent.fire(). The minimum interarrival time specified in
SporadicParameters61 is enforced as defined there. Unless the handler explicitly
chooses otherwise there will be one execution of the code in handleAsyncEvent()
for each entry in the list. The ith execution of handleAsyncEvent() will be released
for scheduling at the time of the ith entry in the list.

There is no restriction on what handlers may do. They may run for a long or short
time, and they may block. (Note: blocked handlers may hold system resources.)

Normally, handlers are bound to an execution context dynamically, when their
AsyncEvent181 occurs. This can introduce a (small) time penalty. For critical
handlers that can not afford the expense, and where this penalty is a problem, use a
BoundAsyncEventHandler195 .

The semantics for memory areas that were defined for realtime threads apply in
the same way to instances of AsyncEventHandler They may inherit a scope stack
when they are created, and the single parent rule applies to the use of memory scopes
for instances of AsyncEventHandler just as it does in realtime threads.

9.2.1 Constructors

public AsyncEventHandler()
Create a handler whose SchedulingParameters51 are inherited from the
current thread and does not have either ReleaseParameters54 or
MemoryParameters129 .

public AsyncEventHandler(boolean nonheap)
Create a handler whose parameters are inherited from the current thread, if
it is a RealtimeThread23 , or null otherwise.

Parameters:
nonheap - A flag meaning, when true, that this will have

characteristics identical to a NoHeapRealtimeThread33 . A
false value means this will have characteristics identical to a
RealtimeThread23 . If true and the current thread is not a
NoHeapRealtimeThread33 or a RealtimeThread23
executing within a ScopedMemory84 or ImmortalMemory82
scope then an IllegalArgumentException is thrown.

ASYNCEVENTHANDLER

185

public AsyncEventHandler(boolean nonheap,
java.lang.Runnable logic)

Create a handler whose parameters are inherited from the current thread, if
it is a RealtimeThread23 , or null otherwise.

Parameters:
nonheap - A flag meaning, when true, that this will have

characteristics identical to a NoHeapRealtimeThread33 . A
false value means this will have characteristics identical to a
RealtimeThread23 . If true and the current thread is not a
NoHeapRealtimeThread33 or a RealtimeThread23
executing within a ScopedMemory84 or ImmortalMemory82
scope then an IllegalArgumentException is thrown.

logic - The java.lang.Runnable object whose run is executed by
handleAsyncEvent.

public AsyncEventHandler(java.lang.Runnable logic)
Create a handler whose SchedulingParameters51 are inherited from the
current thread and does not have either ReleaseParameters54 or
MemoryParameters129 .

Parameters:
logic - The java.lang.Runnable object whose run is executed by

handleAsyncEvent.

public AsyncEventHandler(SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memory,
MemoryArea77 area,
ProcessingGroupParameters67 group,
boolean nonheap)

Create a handler with the specified parameters.

Parameters:
scheduling - A SchedulingParameters51 object which will be

associated with the constructed instance of this. If null this will
be assigned the reference to the SchedulingParameters51 of
the current thread.

release - A ReleaseParameters54 object which will be
associated with the constructed instance of this. If null this will
have no ReleaseParameters54 .

CHAPTER 9 ASYNCHRONY

186

memory - A MemoryParameters129 object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters129 .

area - The MemoryArea77 for this AsyncEventHandler. If null,
inherit the current memory area at the time of construction. The
initial memory area must be a reference to a ScopedMemory84
or ImmortalMemory82 object if noheap is true.

group - A ProcessingGroupParameters67 object to which this
will be associated. If null this will not be associated with any
processing group.

nonheap - A flag meaning, when true, that this will have
characteristics identical to a NoHeapRealtimeThread33 .

logic - The java.lang.Runnable object whose run is executed by
handleAsyncEvent.

Throws:
{@link - IllegalArgumentException} if the initial memory area is in

heap memory, and the noheap parameter is true.

public AsyncEventHandler(SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memory,
MemoryArea77 area,
ProcessingGroupParameters67 group,
boolean nonheap, java.lang.Runnable logic)

Create a handler with the specified parameters.

Parameters:
scheduling - A SchedulingParameters51 object which will be

associated with the constructed instance of this. If null this will
be assigned the reference to the SchedulingParameters51 of
the current thread.

release - A ReleaseParameters54 object which will be
associated with the constructed instance of this. If null this will
have no ReleaseParameters54 .

memory - A MemoryParameters129 object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters129 .

area - The MemoryArea77 for this AsyncEventHandler. If null,
inherit the current memory area at the time of construction. The

ASYNCEVENTHANDLER

187

initial memory area must be a reference to a ScopedMemory84
or ImmortalMemory82 object if noheap is true.

group - A ProcessingGroupParameters67 object to which this
will be associated. If null this will not be associated with any
processing group.

nonheap - A flag meaning, when true, that this will have
characteristics identical to a NoHeapRealtimeThread33 .

Throws:
{@link - IllegalArgumentException} if the initial memory area is in

heap memory, and the noheap parameter is true.

public AsyncEventHandler(SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memory,
MemoryArea77 area,
ProcessingGroupParameters67 group,
java.lang.Runnable logic)

Create a handler with the specified parameters.

Parameters:
release - A ReleaseParameters54 object which will be

associated with the constructed instance of this. If null this will
have no ReleaseParameters54 .

scheduling - A SchedulingParameters51 object which will be
associated with the constructed instance of this. If null this will
be assigned the reference to the SchedulingParameters51 of
the current thread.

memory - A MemoryParameters129 object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters129 .

area - The MemoryArea77 for this. If null the memory area will be
that of the current thread.

group - A ProcessingGroupParameters67 object to which this
will be associated. If null this will not be associated with any
processing group.

logic - The java.lang.Runnable object whose run is executed by
handleAsyncEvent.

CHAPTER 9 ASYNCHRONY

188

9.2.2 Methods

public boolean addIfFeasible()
Add to the feasibility of the associated scheduler if the resulting feasibility
is schedulable. If successful return true, if not return false. If there is not
assigned scheduler false is returned.

public boolean addToFeasibility()
Inform the scheduler and cooperating facilities that the resource demands
(as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67) of this instance of Schedulable41
will be considered in the feasibility analysis of the associated
Scheduler45 until further notice. Whether the resulting system is feasible
or not, the addition is completed.

Specified By: public boolean addToFeasibility()41 in interface
Schedulable41

Returns: true If the resulting system is feasible.

protected final int getAndClearPendingFireCount()
Atomically set to zero the number of pending executions of this handler
and returns the value from before it was cleared. This is used in handlers
that can handle multiple firings and that want to collapse them together.
The general form for using this is:

public void handleAsyncEvent() {
int fireCount = getAndClearPendingFireCount();
<handle the events>
}
Returns: The pending fire count.

protected int getAndDecrementPendingFireCount()
Atomically decrements the number of pending executions of this handler
(if it was non-zero) and returns the value from before the decrement. This
can be used in the handleAsyncEvent() method in this form to handle
multiple firings:

ASYNCEVENTHANDLER

189

public void handleAsyncEvent() {
<setup>
do {
<handle the event>
} while(getAndDecrementPendingFireCount()>0);
}
This construction is necessary only in the case where one wishes to avoid
the setup costs since the framework guarantees that handleAsyncEvent()
will be invoked the appropriate number of times.

Returns: The pending fire count.

protected int getAndIncrementPendingFireCount()
Atomically increments the number of pending executions of this handler
and returns the value from before the increment. The handleAsync-
Event() method does not need to do this, since the surrounding framework
guarantees that the handler will be re-executed the appropriate number of
times. It is only of value when there is common setup code that is expen-
sive.

Returns: The pending fire count.

public MemoryArea77 getMemoryArea()
Get the current memory area.

Returns: The current memory area in which allocations occur.

public MemoryParameters129 getMemoryParameters()
Get the memory parameters associated with this handler.

Specified By: public MemoryParameters129
getMemoryParameters()42 in interface Schedulable41

Returns: The MemoryParameters129 object associated with this.

protected final int getPendingFireCount()
Return the number of pending executions of this handler

Returns: The pending fire count.

public ProcessingGroupParameters67
getProcessingGroupParameters()

Returns a reference to the ProcessingGroupParameters67 object.

CHAPTER 9 ASYNCHRONY

190

Specified By: public ProcessingGroupParameters67
getProcessingGroupParameters()42 in interface
Schedulable41

public ReleaseParameters54 getReleaseParameters()
Get the release parameters associated with this handler.

Specified By: public ReleaseParameters54
getReleaseParameters()42 in interface Schedulable41

Returns: The ReleaseParameters54 object associated with this.

public Scheduler45 getScheduler()
Return the Scheduler45 for this handler.

Specified By: public Scheduler45 getScheduler()42 in interface
Schedulable41

Returns: The instance of the scheduler managing this.

public SchedulingParameters51 getSchedulingParameters()
Returns a reference to the scheduling parameters object.

Specified By: public SchedulingParameters51
getSchedulingParameters()42 in interface Schedulable41

Returns: The SchedulingParameters51 object associated with this.

public void handleAsyncEvent()
If this handler was constructed using a separate Runnable logic object,
then that Runnable object’s run method is called; This method will be
invoked repeatedly while fireCount is greater than zero.

public boolean removeFromFeasibility()
Inform the scheduler and cooperating facilities that the resource demands,
as expressed in the associated instances of SchedulingParameters51 ,
ReleaseParameters54 , MemoryParameters129 , and
ProcessingGroupParameters67 , of this instance of Schedulable41
should no longer be considered in the feasibility analysis of the associated
Scheduler45 . Whether the resulting system is feasible or not, the subtrac-
tion is completed.

ASYNCEVENTHANDLER

191

Specified By: public boolean removeFromFeasibility()42 in
interface Schedulable41

Returns: true If the resulting system is feasible.

public final void run()
Used by the asynchronous event mechanism, see AsyncEvent181 . This
method invokes handleAsyncEvent() repeatedly while the fire count is
greater than zero. Applications cannot override this method and should
thus override handleAsyncEvent() in subclasses with the logic of the
handler.

Specified By: java.lang.Runnable.run() in interface java.lang.Runnable

public boolean setIfFeasible(ReleaseParameters54 release,
MemoryParameters129 memory)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public boolean setIfFeasible(ReleaseParameters54 release,
MemoryParameters129 memory,
ProcessingGroupParameters67 group)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public boolean setIfFeasible(ReleaseParameters54 release,
ProcessingGroupParameters67 group)

Returns true if, after considering the values of the parameters, the task set
would still be feasible. In this case the values of the parameters are
changed. Returns false if, after considering the values of the parameters,
the task set would not be feasible. In this case the values of the parameters
are not changed.

public void setMemoryParameters(MemoryParameters129 memory)

CHAPTER 9 ASYNCHRONY

192

Set the memory parameters associated with this handler. When it is next
fired, the executing thread will use these parameters to control memory
allocation. Does not affect the current invocation of the run() of this han-
dler.

Specified By: public void
setMemoryParameters(MemoryParameters129 memory)42
in interface Schedulable41

Parameters:
memory - A MemoryParameters129 object which will become the

MemoryParameters129 associated with this after the method
call.

public boolean
setMemoryParametersIfFeasible(MemoryParamet
ers129 memory)

Specified By: public boolean
setMemoryParametersIfFeasible(MemoryParameters129
memParam)43 in interface Schedulable41

public void
setProcessingGroupParameters(ProcessingGrou
pParameters67 group)

Sets the reference to the ProcessingGroupParameters67 object.

Specified By: public void
setProcessingGroupParameters(ProcessingGroupPara
meters67 groupParameters)43 in interface Schedulable41

public boolean
setProcessingGroupParametersIfFeasible(Pro
cessingGroupParameters67 group)

Specified By: public boolean
setProcessingGroupParametersIfFeasible(Processin
gGroupParameters67 groupParameters)43 in interface
Schedulable41

public void setReleaseParameters(ReleaseParameters54
release)

ASYNCEVENTHANDLER

193

Set the release parameters associated with this handler. When it is next
fired, the executing thread will use these parameters to control scheduling.
If the scheduling parameters of a handler is set to null, the handler will be
executed immediately when it is fired, in the thread of the firer. Does not
affect the current invocation of the run() of this handler.

Since this affects the constraints expressed in the release parameters of the
existing schedulable objects, this may change the feasibility of the current
schedule.

Specified By: public void
setReleaseParameters(ReleaseParameters54
release)43 in interface Schedulable41

Parameters:
parameters - A ReleaseParameters54 object which will become

the ReleaseParameters54 associated with this after the
method call.

public boolean
setReleaseParametersIfFeasible(ReleaseParam
eters54 release)

Specified By: public boolean
setReleaseParametersIfFeasible(ReleaseParameters
54 release)43 in interface Schedulable41

public void setScheduler(Scheduler45 scheduler)
throws IllegalThreadStateException

Set the scheduler for this handler. A reference to the scheduler which will
manage the execution of this thread.

Specified By: public void setScheduler(Scheduler45 scheduler)
throws IllegalThreadStateException44 in interface
Schedulable41

Parameters:
scheduler - An instance of Scheduler45 (or subclasses) which

will manage the execution of this thread. If scheduler is null
nothing happens.

Throws:
IllegalThreadStateException

public void setScheduler(Scheduler45 scheduler,

CHAPTER 9 ASYNCHRONY

194

SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memoryParameters,
ProcessingGroupParameters67 processingGroup)
throws IllegalThreadStateException

Set the scheduler for this handler. A reference to the scheduler which will
manage the execution of this thread.

Specified By: public void setScheduler(Scheduler45 scheduler,
SchedulingParameters51 scheduling,
ReleaseParameters54 release,
MemoryParameters129 memoryParameters,
ProcessingGroupParameters67 processingGroup)
throws IllegalThreadStateException44 in interface
Schedulable41

Parameters:
scheduler - An instance of Scheduler45 (or subclasses) which

will manage the execution of this thread. If scheduler is null
nothing happens.

scheduling - A SchedulingParameters51 object which will be
associated with the constructed instance of this. If null this will
be assigned the reference to the SchedulingParameters51 of
the current thread.

release - A ReleaseParameters54 object which will be
associated with the constructed instance of this. If null this will
have no ReleaseParameters54 .

memory - A MemoryParameters129 object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters129 .

group - A ProcessingGroupParameters67 object to which this
will be associated. If null this will not be associated with any
processing group.

Throws:
IllegalThreadStateException

public void setSchedulingParameters(SchedulingParameters51
scheduling)

BOUNDASYNCEVENTHANDLER

195

Set the scheduling parameters associated with this handler. When it is next
fired, the executing thread will use these parameters to control scheduling.
Does not affect the current invocation of the run() of this handler.

Specified By: public void
setSchedulingParameters(SchedulingParameters51
scheduling)44 in interface Schedulable41

Parameters:
parameters - A SchedulingParameters51 object which will

become the SchedulingParameters51 object associated with
this after the method call.

public boolean
setSchedulingParametersIfFeasible(Scheduli
ngParameters51 sched)

Set the SchedulingParameters51 of this scheduable object only if the
resulting task set is feasible.

Specified By: public boolean
setSchedulingParametersIfFeasible(SchedulingPara
meters51 scheduling)44 in interface Schedulable41

Parameters:
scheduling - The SchedulingParameters51 object. If null

nothing happens.

9.3 BoundAsyncEventHandler

Declaration :
public abstract class BoundAsyncEventHandler extends

AsyncEventHandler183

All Implemented Interfaces: java.lang.Runnable, Schedulable41

Description :
A bound asynchronous event handler is an asynchronous event handler that is
permanently bound to a thread. Bound asynchronous event handlers are meant for use
in situations where the added timeliness is worth the overhead of binding the handler
to a thread.

CHAPTER 9 ASYNCHRONY

196

9.3.1 Constructors

public BoundAsyncEventHandler()
Create a handler whose parameters are inherited from the current thread, if
it is a RealtimeThread23 , or null otherwise.

public BoundAsyncEventHandler(SchedulingParameters51
scheduling, ReleaseParameters54 release,
MemoryParameters129 memory,
MemoryArea77 area,
ProcessingGroupParameters67 group,
boolean nonheap, java.lang.Runnable logic)

Create a handler with the specified ReleaseParameters54 and
MemoryParameters129 .

Parameters:
scheduling - A SchedulingParameters51 object which will be

associated with the constructed instance of this. If null this will
be assigned the reference to the SchedulingParameters51 of
the current thread.

release - The ReleaseParameters54 object for this. A value of
null will construct this without a ReleaseParameters54
object.

memory - The MemoryParameters129 object for this. A value of
null will construct this without a MemoryParameters129
object.

area - The MemoryArea77 for this BoundAsyncEventHandler. If
null, inherit the current memory area at the time of construction.
The initial memory area must be a reference to a
ScopedMemory84 or ImmortalMemory82 object if noheap is
true.

nonheap - A flag meaning, when true, that this will have
characteristics identical to a NoHeapRealtimeThread33 .

group - A ProcessingGroupParameters67 object to which this
will be associated. If null this will not be associated with any
processing group.

logic - The java.lang.Runnable object whose run is executed by
handleAsyncEvent.

INTERRUPTIBLE

197

Throws:
{@link - IllegalArgumentException} if the initial memory area is in

heap memory, and the noheap parameter is true.

9.4 Interruptible

Declaration :
public interface Interruptible

Description :
Interruptible is an interface implemented by classes that will be used as arguments
on the doInterruptible() of AsynchronouslyInterruptedException198 and
its subclasses. doInterruptible() invokes the implementation of the method in this
interface. Thus the system can ensure correctness before invoking run() and
correctly cleaned up after run() returns.

9.4.1 Methods

public void
interruptAction(AsynchronouslyInterruptedExc
eption198 exception)

This method is called by the system if the run() method is excepted. Using
this the program logic can determine if the run() method completed nor-
mally or had its control asynchronously transferred to its caller.

Parameters:
exception - Used to invoke methods on

AsynchronouslyInterruptedException198 from within
the interruptAction() method.

public void run(AsynchronouslyInterruptedException198
exception)
throws AsynchronouslyInterruptedException

The main piece of code that is executed when an implementation is given
to doInterruptible(). When you create a class that implements this
interface (usually through an anonymous inner class) you must remember
to include the throws clause to make the method interruptible. If the
throws clause is omitted the run() method will not be interruptible.

CHAPTER 9 ASYNCHRONY

198

Parameters:
exception - Used to invoke methods on

AsynchronouslyInterruptedException198 from within
the run() method.

Throws:
AsynchronouslyInterruptedException198

9.5 AsynchronouslyInterruptedException

Declaration :
public class AsynchronouslyInterruptedException extends

java.lang.InterruptedException

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: Timed201

Description :
An special exception that is thrown in response to an attempt to asynchronously
transfer the locus of control of a RealtimeThread23 .

When a method is declared with AsynchronouslyInterruptedException in its
throws clause the platform is expected to asynchronously throw this exception if
RealtimeThread.interrupt() is called while the method is executing, or if such an
interrupt is pending any time control returns to the method. The interrupt is not
thrown while any methods it invokes are executing, unless they are, in turn, declared
to throw the exception. This is intended to allow long-running computations to be
terminated without the overhead or latency of polling with
java.lang.Thread.interrupted() .

The throws AsynchronouslyInterruptedException clause is a marker on a
stack frame which allows a method to be statically marked as asynchronously
interruptible. Only methods that are marked this way can be interrupted.

When Thread.interrupt(), public void interrupt()27 , or this.fire()
is called, the AsynchronouslyInterruptedException is compared against any
currently pending AsynchronouslyInterruptedException on the thread. If there is
none, or if the depth of the AsynchronouslyInterruptedException is less than the
currently pending AsynchronouslyInterruptedException —- i.e., it is targeted at a
less deeply nested method call —- it becomes the currently pending interrupt.
Otherwise, it is discarded.

If the current method is interruptible, the exception is thrown on the thread.
Otherwise, it just remains pending until control returns to an interruptible method, at

ASYNCHRONOUSLYINTERRUPTEDEXCEPTION

199

which point the AsynchronouslyInterruptedException is thrown. When an
interrupt is caught, the caller should invoke the happened() method on the
AsynchronouslyInterruptedException in which it is interested to see if it matches
the pending AsynchronouslyInterruptedException. If so, the pending
AsynchronouslyInterruptedException is cleared from the thread. Otherwise, it
will continue to propagate outward.

Thread.interrupt() and RealtimeThread.interrupt() generate a system
available generic AsynchronouslyInterruptedException which will always
propagate outward through interruptible methods until the generic
AsynchronouslyInterruptedException is identified and stopped. Other sources
(e.g., this.fire() and Timed201) will generate a specific instance of
AsynchronouslyInterruptedException which applications can identify and thus
limit propagation.

9.5.1 Constructors

public AsynchronouslyInterruptedException()
Create an instance of AsynchronouslyInterruptedException.

9.5.2 Methods

public boolean disable()
Defer the throwing of this exception. If interrupt() is called when this
exception is disabled, the exception is put in pending state. The exception
will be thrown if this exception is subsequently enabled. This is valid only
within a call to doInterruptible(). Otherwise it returns false and does
nothing.

Returns: True if this is disabled otherwise returns false.

public boolean doInterruptible(Interruptible197 logic)
Execute the run() method of the given Interruptible197 . This method
may be on the stack in exactly one RealtimeThread23 . An attempt to
invoke this method in a thread while it is on the stack of another or the
same thread will cause an immediate return with a value of false.

Parameters:
code - An instance of an Interruptible197 whose run() method

will be called.

CHAPTER 9 ASYNCHRONY

200

Returns: True if the method call completed normally. Returns false if
another call to doInterruptible has not completed.

public boolean enable()
Enable the throwing of this exception. This is valid only within a call to
doInterruptible(). Otherwise it returns false and does nothing.

Returns: True if this is enabled otherwise returns false.

public boolean fire()
Make this exception the current exception if doInterruptible() has been
invoked and not completed.

Returns: True if this was fired. If there is no current invocation of
doInterruptible(), then false is returned with no other effect.
False is also returned if there is already a current
doInterruptible() or if disable() has been called.

public static AsynchronouslyInterruptedException198
getGeneric()

Return the system generic AsynchronouslyInterruptedException,
which is generated when RealtimeThread.interrupt() is invoked.

public boolean happened(boolean propagate)
Used with an instance of this exception to see if the current exception is
this exception.

Parameters:
propagate - Propagate the exception if true and this exception is not

the current one. If false, then the state of this is set to
nonpending (i.e., it will stop propagating).

Returns: True if this is the current exception. Returns false if this is not the
current exception.

public boolean isEnabled()
Query the enabled status of this exception.

Returns: True if this is enabled otherwise returns false.

public static void propagate()

TIMED

201

Cause the pending exception to continue up the stack.

9.6 Timed

Declaration :
public class Timed extends AsynchronouslyInterruptedException198

All Implemented Interfaces: java.io.Serializable

Description :
Create a scope in a RealtimeThread23 for which interrupt() will be called at the
expiration of a timer. This timer will begin measuring time at some point between the
time doInterruptible() is invoked and the time the run() method of the
Interruptible object is invoked. Each call of doInterruptible() on an instance
of Timed will restart the timer for the amount of time given in the constructor or the
most recent invocation of resetTime(). All memory use of Timed occurs during
construction or the first invocation of doInterruptible(). Subsequent invokes of
doInterruptible() do not allocate memory.

Usage: new Timed(T).doInterruptible(interruptible);

9.6.1 Constructors

public Timed(HighResolutionTime148 time)
throws IllegalArgumentException

Create an instance of Timed with a timer set to timeout. If the time is in the
past the AsynchronouslyInterruptedException198 mechanism is
immediately activated.

Parameters:
time - The interval of time between the invocation of

doInterruptible() and when interrupt() is called on
currentRealtimeThread(). If null the
java.lang.IllegalArgumentException is thrown.

Throws:
IllegalArgumentException

9.6.2 Methods

public boolean doInterruptible(Interruptible197 logic)

CHAPTER 9 ASYNCHRONY

202

Execute a timeout method. Starts the timer and executes the run() method
of the given Interruptible197 object.

Overrides: public boolean doInterruptible(Interruptible197
logic)199 in class
AsynchronouslyInterruptedException198

Parameters:
logic - Implements an Interruptible197 run() method. If null

nothing happens.

public void resetTime(HighResolutionTime148 time)
To reschedule the timeout for the next invocation of doInterruptible().

Parameters:
time - This can be an absolute time or a relative time. If null the

timeout is not changed.

SYSTEM AND OPTIONS

203

C h a p t e r 10
System and Options

This section contains classes that:

• Provide a common idiom for binding POSIX signals to instances of AsyncEvent
when POSIX signals are available on the underlying platform.

• Provide a class that contains operations and semantics that affect the entire sys-
tem.

• Provide the security semantics required by the additional features in the entirety
of this specification, which are additional to those required by implementations of
the Java Language Specification.

The RealtimeSecurity class provides security primarily for physical memory
access.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

1. The POSIX signal handler class is required to be available when implementations
of this specification execute on an underlying platform that provides POSIX sig-
nals or any subset of signals named with the POSIX names.

2. The RealtimeSecurity class is required.

CHAPTER 10 SYSTEM AND OPTIONS

204

Rationale

This specification accommodates the variation in underlying system variation in a
number of ways. One of the most important is the concept of optionally required
classes (e.g., the POSIX signal handler class). This class provides a commonality that
can be relied upon by program logic that intends to execute on implementations that
themselves execute on POSIX compliant systems.

The RealtimeSystem class functions in similar capacity to java.lang.System.
Similarly, the RealtimeSecurity class functions similarly to
java.lang.SecurityManager.

10.1 POSIXSignalHandler

Declaration :
public final class POSIXSignalHandler

Description :
Use instances of AsyncEvent181 to handle POSIX signals. Usage:

POSIXSignalHandler.addHandler(SIGINT, intHandler);
This class is required to be implemented only if the underlying operating system
supports POSIX signals.

10.1.1 Fields

public static final int SIGABRT
Used by abort, replace SIGIOT in the future.

public static final int SIGALRM
Alarm clock.

public static final int SIGBUS
Bus error.

public static final int SIGCANCEL
Thread cancellation signal used by libthread.

public static final int SIGCHLD

POSIXSIGNALHANDLER

205

Child status change alias (POSIX).

public static final int SIGCLD
Child status change.

public static final int SIGCONT
Stopped process has been continued.

public static final int SIGEMT
EMT instruction.

public static final int SIGFPE
Floating point exception.

public static final int SIGFREEZE
Special signal used by CPR.

public static final int SIGHUP
Hangup.

public static final int SIGILL
Illegal instruction (not reset when caught).

public static final int SIGINT
Interrupt (rubout).

public static final int SIGIO
Socket I/O possible (SIGPOLL alias).

public static final int SIGIOT
IOT instruction.

public static final int SIGKILL
Kill (cannot be caught or ignored).

CHAPTER 10 SYSTEM AND OPTIONS

206

public static final int SIGLOST
Resource lost (e.g., record-lock lost).

public static final int SIGLWP
Special signal used by thread library.

public static final int SIGPIPE
Write on a pipe with no one to read it.

public static final int SIGPOLL
Pollable event occurred.

public static final int SIGPROF
Profiling timer expired.

public static final int SIGPWR
Power-fail restart.

public static final int SIGQUIT
Quit (ASCII FS).

public static final int SIGSEGV
Segmentation violation.

public static final int SIGSTOP
Stop (cannot be caught or ignored).

public static final int SIGSYS
Bad argument to system call.

public static final int SIGTERM
Software termination signal from kill.

public static final int SIGTHAW

POSIXSIGNALHANDLER

207

Special signal used by CPR.

public static final int SIGTRAP
Trace trap (not reset when caught).

public static final int SIGTSTP
User stop requested from tty.

public static final int SIGTTIN
Background tty read attempted.

public static final int SIGTTOU
Background tty write attempted.

public static final int SIGURG
Urgent socket condition.

public static final int SIGUSR1
User defined signal = 1.

public static final int SIGUSR2
User defined signal = 2.

public static final int SIGVTALRM
Virtual timer expired.

public static final int SIGWAITING
Process’s lwps are blocked.

public static final int SIGWINCH
Window size change.

public static final int SIGXCPU
Exceeded cpu limit.

CHAPTER 10 SYSTEM AND OPTIONS

208

public static final int SIGXFSZ
Exceeded file size limit.

10.1.2 Constructors

public POSIXSignalHandler()

10.1.3 Methods

public static void addHandler(int signal,
AsyncEventHandler183 handler)

Add the given AsyncEventHandler183 to the list of handlers of the
AsyncEvent181 of the given signal.

Parameters:
signal - One of the POSIX signals from this (e.g., this.SIGLOST).

If the value given to signal is not one of the POSIX signals
then an IllegalArgumentException will be thrown.

handler - An AsyncEventHandler183 which will be scheduled
when the given signal occurs.

public static void removeHandler(int signal,
AsyncEventHandler183 handler)

Remove the given AsyncEventHandler183 to the list of handlers of the
AsyncEvent181 of the given signal.

Parameters:
signal - One of the POSIX signals from this (e.g., this.SIGLOST).

If the value given to signal is not one of the POSIX signals
then an IllegalArgumentException will be thrown.

handler - An AsyncEventHandler183 which will be scheduled
when the given signal occurs.

public static void setHandler(int signal,
AsyncEventHandler183 handler)

Set the given AsyncEventHandler183 as the handler of the
AsyncEvent181 of the given signal.

REALTIMESECURITY

209

Parameters:
signal - One of the POSIX signals from this (e.g., this.SIGLOST).

If the value given to signal is not one of the POSIX signals
then an IllegalArgumentException will be thrown.

handler - An AsyncEventHandler183 which will be scheduled
when the given signal occurs. If h is null then no handler will be
associated with this (i.e., remove all handlers).

10.2 RealtimeSecurity

Declaration :
public class RealtimeSecurity

Description :
Security policy object for real-time specific issues. Primarily used to control access to
physical memory.

10.2.1 Constructors

public RealtimeSecurity()

10.2.2 Methods

public void checkAccessPhysical()
throws SecurityException

Check whether the application is allowed to access physical memory.

Throws:
SecurityException - the application doesn’t have permission.

public void checkAccessPhysicalRange(long base,
long size)
throws SecurityException

Check whether the application is allowed to access physical memory
within the specified range.

Throws:
SecurityException - the application doesn’t have permission.

public void checkSetFilter()

CHAPTER 10 SYSTEM AND OPTIONS

210

throws SecurityException
Check whether the application is allowed to set filter objects.

Throws:
SecurityException - the application doesn’t have permission.

public void checkSetScheduler()
throws SecurityException

Check whether the application is allowed to set the scheduler.

Throws:
SecurityException - the application doesn’t have permission.

10.3 RealtimeSystem

Declaration :
public final class RealtimeSystem

Description :
RealtimeSystem provides a means for tuning the behavior of the implementation by
specifying parameters such as the maximum number of locks that can be in use
concurrently, and the monitor control policy. In addition, RealtimeSystem provides a
mechanism for obtaining access to the security manager, garbage collector and
scheduler, to make queries from them or to set parameters.

10.3.1 Fields

public static final byte BIG_ENDIAN

public static final byte BYTE_ORDER

public static final byte LITTLE_ENDIAN

10.3.2 Constructors

public RealtimeSystem()

REALTIMESYSTEM

211

10.3.3 Methods

public static GarbageCollector132 currentGC()
Return a reference to the currently active garbage collector for the heap.

Returns: A GarbageCollector132 object which is the current collector
collecting objects on the traditional Java heap.

public static int getConcurrentLocksUsed()
Get the maximum number of locks that have been used concurrently. This
value can be used for tuning the concurrent locks parameter, which is used
as a hint by systems that use a monitor cache.

Returns: An int whose value is the number of locks in use at the time of the
invocation of the method.

public static int getMaximumConcurrentLocks()
Get the maximum number of locks that can be used concurrently without
incurring an execution time increase as set by the setMaximum-
ConcurrentLocks() methods.

Returns: An int whose value is the maximum number of locks that can be
in simultaneous use.

public static RealtimeSecurity209 getSecurityManager()
Get a reference to the security manager used to control access to real-time
system features such as access to physical memory.

Returns: A RealtimeSecurity209 object representing the default real-
time security manager.

public static void setMaximumConcurrentLocks(int
numLocks)

Set the anticipated maximum number of locks that may be held or waited
on concurrently. Provide a hint to systems that use a monitor cache as to
how much space to dedicate to the cache.

Parameters:
number - An integer whose value becomes the number of locks that

can be in simultaneous use without incurring an execution time
increase. If number is less than or equal to zero nothing happens.

CHAPTER 10 SYSTEM AND OPTIONS

212

public static void setMaximumConcurrentLocks(int number,
boolean hard)

Set the anticipated maximum number of locks that may be held or waited
on concurrently. Provide a limit for the size of the monitor cache on sys-
tems that provide one if hard is true.

Parameters:
number - The maximum number of locks that can be in simultaneous

use without incurring an execution time increase. If number is
less than or equal to zero nothing happens.

hard - If true, number sets a limit. If a lock is attempted which would
cause the number of locks to exceed number then a
ResourceLimitError221 is thrown.

public static void setSecurityManager(RealtimeSecurity209
manager)

Set a new real-time security manager.

Parameters:
manager - A RealtimeSecurity209 object which will become the

new security manager.

Throws:
SecurityException - Thrown if security manager has already been

set.

EXCEPTIONS

213

C h a p t e r 11
Exceptions

This section contains classes that:

• Add additional exception classes required by the entirety of the other sections of
this specification.

• Provide for the ability to asynchronously transfer the control of program logic.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

1. All classes in this section are required.

2. All exceptions, except AsynchronouslyInterruptedException, are required to
have semantics exactly as those of their eventual superclass in the java.* hierar-
chy.

3. Instances of the class AsynchronouslyInterruptedException can be generated
by execution of program logic and by internal virtual machine mechanisms that
are asynchronous to the execution of program logic which is the target of the
exception.

4. Program logic that exists in methods that throw AsynchronouslyInterrupted-
Exception is subject to receiving an instance of AsynchronouslyInterrupted-

CHAPTER 11 EXCEPTIONS

214

Exception at any time during execution.

Rationale

The need for additional exceptions given the new semantics added by the other
sections of this specification is obvious. That the specification attaches new,
nontraditional, exception semantics to AsynchronouslyInterruptedException is,
perhaps, not so obvious. However, after careful thought, and given our self-imposed
directive that only well-defined code blocks would be subject to having their control
asynchronously transferred, the chosen mechanism is logical.

11.1 DuplicateFilterException

Declaration :
public class DuplicateFilterException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
PhysicalMemoryManager95 can only accommodate one filter object for each type
of memory. It throws this exception if an attempt is made to register more than one
filter for a type of memory.

11.1.1 Constructors

public DuplicateFilterException()

public DuplicateFilterException(java.lang.String s)
Parameters:

s - Detail string

11.2 InaccessibleAreaException

Declaration :
public class InaccessibleAreaException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

MEMORYTYPECONFLICTEXCEPTION

215

Description :
The specified memory area is not above the current allocation context on the current
thread scope stack.

11.2.1 Constructors

public InaccessibleAreaException()
A constructor for InaccessibleAreaException.

public InaccessibleAreaException(java.lang.String
description)

A descriptive constructor for InaccessibleAreaException.

Parameters:
description - Description of the error.

11.3 MemoryTypeConflictException

Declaration :
public class MemoryTypeConflictException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
This exception is thrown when the PhysicalMemoryManager95 is given conflicting
specifications for memory. The conflict can be between types in an array of memory
type specifiers, or between the specifiers and a specified base address.

11.3.1 Constructors

public MemoryTypeConflictException()

public MemoryTypeConflictException(java.lang.String s)
Parameters:

s - Detail string

CHAPTER 11 EXCEPTIONS

216

11.4 MemoryScopeException

Declaration :
public class MemoryScopeException extends java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
Thrown if construction of any of the wait-free queues is attempted with the ends of
the queues in incompatible memory areas.

11.4.1 Constructors

public MemoryScopeException()
A constructor for MemoryScopeException.

public MemoryScopeException(java.lang.String description)
A descriptive constructor for MemoryScopeException.

Parameters:
description - A description of the exception.

11.5 MITViolationException

Declaration :
public class MITViolationException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
Thrown by the fire() method of an instance of AsyncEvent when the bound
instance of AsyncEventHandler183 with a ReleaseParameters54 type of
SporadicParameters has mitViolationExcept behavior and the minimum
interarrival time gets violated.

11.5.1 Constructors

public MITViolationException()

OFFSETOUTOFBOUNDSEXCEPTION

217

A constructor for MITViolationException.

public MITViolationException(java.lang.String
description)

A descriptive constructor for MITViolationException.

Parameters:
description - Description of the error.

11.6 OffsetOutOfBoundsException

Declaration :
public class OffsetOutOfBoundsException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
Thrown if the constructor of an ImmortalPhysicalMemory100 ,
LTPhysicalMemory106 , VTPhysicalMemory112 , RawMemoryAccess117 , or
RawMemoryFloatAccess125 is given an invalid address.

11.6.1 Constructors

public OffsetOutOfBoundsException()

public OffsetOutOfBoundsException(java.lang.String
description)

11.7 SizeOutOfBoundsException

Declaration :
public class SizeOutOfBoundsException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
Thrown if the constructor of an ImmortalPhysicalMemory100 ,
LTPhysicalMemory106 , VTPhysicalMemory112 , RawMemoryAccess117 , or

CHAPTER 11 EXCEPTIONS

218

RawMemoryFloatAccess125 is given an invalid size or if an accessor method on one
of the above classes would cause access to an invalid address.

11.7.1 Constructors

public SizeOutOfBoundsException()
A constructor for SizeOutOfBoundsException.

public SizeOutOfBoundsException(java.lang.String
description)

A descriptive constructor for SizeOutOfBoundsException.

Parameters:
description - The description of the exception.

11.8 UnsupportedPhysicalMemoryException

Declaration :
public class UnsupportedPhysicalMemoryException extends

java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Description :
Thrown when the underlying hardware does not support the type of physical memory
given to the physical memory create() method.

See Also: RawMemoryAccess117, RawMemoryFloatAccess125,
ImmortalPhysicalMemory100, LTPhysicalMemory106,
VTPhysicalMemory112

11.8.1 Constructors

public UnsupportedPhysicalMemoryException()
A constructor for UnsupportedPhysicalMemoryException.

public
UnsupportedPhysicalMemoryException(java.la
ng.String description)

MEMORYINUSEEXCEPTION

219

A descriptive constructor for UnsupportedPhysicalMemoryException.

Parameters:
description - The description of the exception.

11.9 MemoryInUseException

Declaration :
public class MemoryInUseException extends

java.lang.RuntimeException

All Implemented Interfaces: java.io.Serializable

Description :
Thrown when an attempt is made to allocate a range of physical or virtual memory
that is already in use.

11.9.1 Constructors

public MemoryInUseException()

public MemoryInUseException(java.lang.String s)
Parameters:

s - Detail string

11.10 ScopedCycleException

Declaration :
public class ScopedCycleException extends

java.lang.RuntimeException

All Implemented Interfaces: java.io.Serializable

Description :
Thrown when a user tries to enter a ScopedMemory84 that is already accessible
(ScopedMemory84 is present on stack) or when a user tries to create
ScopedMemory84 cycle spanning threads (tries to make cycle in the VM
ScopedMemory84 tree structure).

CHAPTER 11 EXCEPTIONS

220

11.10.1 Constructors

public ScopedCycleException()

public ScopedCycleException(java.lang.String description)

11.11 UnknownHappeningException

Declaration :
public class UnknownHappeningException extends

java.lang.RuntimeException

All Implemented Interfaces: java.io.Serializable

Description :
Thrown when bindTo() is called with an illegal happening.

11.11.1 Constructors

public UnknownHappeningException()

public UnknownHappeningException(java.lang.String
description)

11.12 IllegalAssignmentError

Declaration :
public class IllegalAssignmentError extends java.lang.Error

All Implemented Interfaces: java.io.Serializable

Description :
The exception thrown on an attempt to make an illegal assignment. For example, this
will be thrown if logic attempts to assign a reference to an object in ScopedMemory to
a field in an object in ImmortalMemory.

11.12.1 Constructors

public IllegalAssignmentError()

MEMORYACCESSERROR

221

A constructor for IllegalAssignmentError.

public IllegalAssignmentError(java.lang.String
description)

A descriptive constructor for IllegalAssignmentError.

Parameters:
description - Description of the error.

11.13 MemoryAccessError

Declaration :
public class MemoryAccessError extends java.lang.Error

All Implemented Interfaces: java.io.Serializable

Description :
This error is thrown on an attempt to refer to an object in an inaccessible
MemoryArea77 . For example this will be thrown if logic in a
NoHeapRealtimeThread33 attempts to refer to an object in the traditional Java
heap.

11.13.1 Constructors

public MemoryAccessError()
A constructor for MemoryAccessError.

public MemoryAccessError(java.lang.String description)
A descriptive constructor for MemoryAccessError.

Parameters:
description - Description of the error.

11.14 ResourceLimitError

Declaration :
public class ResourceLimitError extends java.lang.Error

All Implemented Interfaces: java.io.Serializable

CHAPTER 11 EXCEPTIONS

222

Description :
Thrown if an attempt is made to exceed a system resource limit, such as the maximum
number of locks.

11.14.1 Constructors

public ResourceLimitError()
A constructor for ResourceLimitError.

public ResourceLimitError(java.lang.String description)
A descriptive constructor for ResourceLimitError.

Parameters:
description - The description of the exception.

11.15 ThrowBoundaryError

Declaration :
public class ThrowBoundaryError extends java.lang.Error

All Implemented Interfaces: java.io.Serializable

Description :
The error thrown by public void enter(Runnable logic) when a
java.lang.Throwable allocated from memory that is not usable in the surrounding
scope tries to propagate out of the scope of the public void enter(Runnable
logic).

11.15.1 Constructors

public ThrowBoundaryError()
A constructor for ThrowBoundaryError.

public ThrowBoundaryError(java.lang.String description)
A descriptive constructor for ThrowBoundaryError.

Parameters:
description - Description of the error.

223 224

ALMANAC LEGEND
The almanac presents classes and intefaces in alphabetic order, regardless of their
package. Fields, methods and constructors are in alphabetic order in a single list.

This almanac is modeled after the style introduced by Patrick Chan in his excellent
book Java Developers Almanac.

1. Name of the class, interface, nested class or nested interface. Interfaces are italic.

2. Name of the package containing the class or interface.

3. Inheritance hierarchy. In this example, RealtimeThread extends Thread, which
extends Object.

4. Implemented interfaces. The interface is to the right of, and on the same line as,
the class that implements it. In this example, Thread implements Runnable, and
RealtimeThread implements Schedulable.

5. The first column above is for the value of the @since comment, which indicates
the version in which the item was introduced.

6. The second column above is for the following icons. If the “protected” symbol
does not appear, the member is public. (Private and package-private modifiers
also have no symbols.) One symbol from each group can appear in this column.

7. Return type of a method or declared type of a field. Blank for constructors.

8. Name of the constructor, field or method. Nested classes are listed in 1, not here.

Modifiers
❍ abstract
● final
❏ static
■ static final

Access Modifiers
♦protected

Constructors and Fields
❉ constructor
✍ field

Object
➥Thread Runnable

➥ RealtimeThread Schedulable

RealtimeThread javax.realtime

void addToFeasibility()
RealtimeThread currentRealtimeThread()

Scheduler getScheduler()
❉ RealtimeThread()
❉ RealtimeThread(SchedulingParameters scheduling)
❏ void sleep(Clock clock, HighResolutionTime time)

➊ ➋

➌
➍

➎ ➏

➐ ➑

➘➘

➙
➙

➘

➚

➘
1.3 ❏

1.3

throws InterruptedException➚

225

C h a p t e r 12
Almanac

Object
➥HighResolutionTime Comparable

➥AbsoluteTime

AbsoluteTime javax.realtime

AbsoluteTime absolute(Clock clock)

AbsoluteTime absolute(Clock clock, AbsoluteTime destination)

❉ AbsoluteTime()

❉ AbsoluteTime(AbsoluteTime time)

❉ AbsoluteTime(java.util.Date date)

❉ AbsoluteTime(long millis, int nanos)

AbsoluteTime add(long millis, int nanos)

AbsoluteTime add(long millis, int nanos, AbsoluteTime destination)

● AbsoluteTime add(RelativeTime time)

AbsoluteTime add(RelativeTime time, AbsoluteTime destination)

java.util.Date getDate()

RelativeTime relative(Clock clock)

RelativeTime relative(Clock clock, AbsoluteTime destination)

void set(java.util.Date date)

● RelativeTime subtract(AbsoluteTime time)

● RelativeTime subtract(AbsoluteTime time, RelativeTime destination)

CHAPTER 12 ALMANAC

226

Object
➥ReleaseParameters

➥AperiodicParameters

Object
➥AsyncEvent

Object
➥AsyncEventHandler Schedulable

● AbsoluteTime subtract(RelativeTime time)

AbsoluteTime subtract(RelativeTime time, AbsoluteTime destination)

String toString()

AperiodicParameters javax.realtime

❉ AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

boolean setIfFeasible(RelativeTime cost,
RelativeTime deadline)

AsyncEvent javax.realtime

void addHandler(AsyncEventHandler handler)

❉ AsyncEvent()

void bindTo(String happening)
throws UnknownHappeningException

ReleaseParameters createReleaseParameters()

void fire()

boolean handledBy(AsyncEventHandler handler)

void removeHandler(AsyncEventHandler handler)

void setHandler(AsyncEventHandler handler)

void unbindTo(String happening)
throws UnknownHappeningException

AsyncEventHandler javax.realtime

boolean addIfFeasible()

boolean addToFeasibility()

❉ AsyncEventHandler()

❉ AsyncEventHandler(boolean nonheap)

❉ AsyncEventHandler(boolean nonheap,
Runnable logic)

❉ AsyncEventHandler(Runnable logic)

ALMANAC

227

❉ AsyncEventHandler(SchedulingParameters schedulin
g, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap)

❉ AsyncEventHandler(SchedulingParameters schedulin
g, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap, Runnable logic)

❉ AsyncEventHandler(SchedulingParameters schedulin
g, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

●♦ int getAndClearPendingFireCount()

♦ int getAndDecrementPendingFireCount()

♦ int getAndIncrementPendingFireCount()

MemoryArea getMemoryArea()

MemoryParameters getMemoryParameters()

●♦ int getPendingFireCount()

ProcessingGroupPa-
rameters

getProcessingGroupParameters()

ReleaseParameters getReleaseParameters()

Scheduler getScheduler()

SchedulingParameters getSchedulingParameters()

void handleAsyncEvent()

boolean removeFromFeasibility()

● void run()

boolean setIfFeasible(ReleaseParameters release,
MemoryParameters memory)

boolean setIfFeasible(ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

boolean setIfFeasible(ReleaseParameters release,
ProcessingGroupParameters group)

void setMemoryParameters(MemoryParameters memory)

boolean setMemoryParametersIfFeasible(MemoryParameters
memory)

void setProcessingGroupParameters(ProcessingGroupPar
ameters group)

boolean setProcessingGroupParametersIfFeasible(Processing
GroupParameters group)

void setReleaseParameters(ReleaseParameters release)

boolean setReleaseParametersIfFeasible(ReleaseParameters r
elease)

CHAPTER 12 ALMANAC

228

Object
➥Throwable java.io.Serializable

➥Exception
➥InterruptedException

➥AsynchronouslyInterruptedException

Object
➥AsyncEventHandler Schedulable

➥BoundAsyncEventHandler

void setScheduler(Scheduler scheduler)
throws IllegalThreadStateException

void setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters processingGroup)
throws IllegalThreadStateException

void setSchedulingParameters(SchedulingParameters sche
duling)

boolean setSchedulingParametersIfFeasible(SchedulingParam
eters sched)

AsynchronouslyInterruptedEx-
ception

javax.realtime

❉ AsynchronouslyInterruptedException()

boolean disable()

boolean doInterruptible(Interruptible logic)

boolean enable()

boolean fire()

❏ AsynchronouslyInter-
ruptedException

getGeneric()

boolean happened(boolean propagate)

boolean isEnabled()

❏ void propagate()

BoundAsyncEventHandler javax.realtime

❉ BoundAsyncEventHandler()

❉ BoundAsyncEventHandler(SchedulingParameters sch
eduling, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap, Runnable logic)

ALMANAC

229

Object
➥Clock

Object
➥Throwable java.io.Serializable

➥Exception
➥DuplicateFilterException

Object
➥GarbageCollector

Object
➥MemoryArea

➥HeapMemory

Clock javax.realtime

❉ Clock()

❏ Clock getRealtimeClock()

❍ RelativeTime getResolution()

AbsoluteTime getTime()

❍ void getTime(AbsoluteTime time)

❍ void setResolution(RelativeTime resolution)

DuplicateFilterException javax.realtime

❉ DuplicateFilterException()

❉ DuplicateFilterException(String s)

GarbageCollector javax.realtime

❉ GarbageCollector()

❍ RelativeTime getPreemptionLatency()

HeapMemory javax.realtime

❏ HeapMemory instance()

long memoryConsumed()

long memoryRemaining()

CHAPTER 12 ALMANAC

230

Object
➥HighResolutionTime Comparable

Object
➥Throwable java.io.Serializable

➥Error
➥IllegalAssignmentError

Object
➥MemoryArea

➥ImmortalMemory

HighResolutionTime javax.realtime

❍ AbsoluteTime absolute(Clock clock)

❍ AbsoluteTime absolute(Clock clock, AbsoluteTime dest)

int compareTo(HighResolutionTime time)

int compareTo(Object object)

boolean equals(HighResolutionTime time)

boolean equals(Object object)

● long getMilliseconds()

● int getNanoseconds()

int hashCode()

❍ RelativeTime relative(Clock clock)

❍ RelativeTime relative(Clock clock, HighResolutionTime time)

void set(HighResolutionTime time)

void set(long millis)

void set(long millis, int nanos)

❏ void waitForObject(Object target,
HighResolutionTime time)
throws InterruptedException

IllegalAssignmentError javax.realtime

❉ IllegalAssignmentError()

❉ IllegalAssignmentError(String description)

ImmortalMemory javax.realtime

❏ ImmortalMemory instance()

ALMANAC

231

Object
➥MemoryArea

➥ImmortalPhysicalMemory

ImmortalPhysicalMemory javax.realtime

❉ ImmortalPhysicalMemory(Object type, long size)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException

❉ ImmortalPhysicalMemory(Object type, long base,
long size) throws SecurityException, SizeOutOf-
BoundsException, OffsetOutOfBoundsExcep-
tion, UnsupportedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ ImmortalPhysicalMemory(Object type, long base,
long size, Runnable logic)
throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ ImmortalPhysicalMemory(Object type, long size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, UnsupportedPhysi-
calMemoryException,
MemoryTypeConflictException

❉ ImmortalPhysicalMemory(Object type, long base,
SizeEstimator size) throws SecurityException,
SizeOutOfBoundsException, OffsetOutOfBound-
sException, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException,
MemoryInUseException

❉ ImmortalPhysicalMemory(Object type, long base,
SizeEstimator size, Runnable logic)
throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ ImmortalPhysicalMemory(Object type,
SizeEstimator size) throws SecurityException,
SizeOutOfBoundsException, UnsupportedPhysi-
calMemoryException, MemoryTypeConflictEx-
ception

❉ ImmortalPhysicalMemory(Object type,
SizeEstimator size, Runnable logic)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException

CHAPTER 12 ALMANAC

232

Object
➥SchedulingParameters

➥PriorityParameters
➥ImportanceParameters

Object
➥Throwable java.io.Serializable

➥Exception
➥InaccessibleAreaException

Interruptible

Object
➥MemoryArea

➥ScopedMemory
➥LTMemory

ImportanceParameters javax.realtime

int getImportance()

❉ ImportanceParameters(int priority, int importance)

void setImportance(int importance)

String toString()

InaccessibleAreaException javax.realtime

❉ InaccessibleAreaException()

❉ InaccessibleAreaException(String description)

Interruptible javax.realtime

void interruptAction(AsynchronouslyInterruptedException
exception)

void run(AsynchronouslyInterruptedException exception)
throws AsynchronouslyInterruptedException

LTMemory javax.realtime

long getMaximumSize()

❉ LTMemory(long initialSizeInBytes,
long maxSizeInBytes)

❉ LTMemory(long initialSizeInBytes,
long maxSizeInBytes, Runnable logic)

ALMANAC

233

Object
➥MemoryArea

➥ScopedMemory
➥LTPhysicalMemory

❉ LTMemory(SizeEstimator initial,
SizeEstimator maximum)

❉ LTMemory(SizeEstimator initial,
SizeEstimator maximum, Runnable logic)

String toString()

LTPhysicalMemory javax.realtime

❉ LTPhysicalMemory(Object type, long size)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException

❉ LTPhysicalMemory(Object type, long base, long size)
throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ LTPhysicalMemory(Object type, long base, long size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, OffsetOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ LTPhysicalMemory(Object type, long size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, UnsupportedPhysi-
calMemoryException,
MemoryTypeConflictException

❉ LTPhysicalMemory(Object type, long base,
SizeEstimator size) throws SecurityException,
SizeOutOfBoundsException, OffsetOutOfBound-
sException, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException,
MemoryInUseException

❉ LTPhysicalMemory(Object type, long base,
SizeEstimator size, Runnable logic)
throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

CHAPTER 12 ALMANAC

234

Object
➥Throwable java.io.Serializable

➥Error
➥MemoryAccessError

Object
➥MemoryArea

❉ LTPhysicalMemory(Object type, SizeEstimator size)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException

❉ LTPhysicalMemory(Object type, SizeEstimator size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, UnsupportedPhysi-
calMemoryException,
MemoryTypeConflictException

String toString()

MemoryAccessError javax.realtime

❉ MemoryAccessError()

❉ MemoryAccessError(String description)

MemoryArea javax.realtime

void enter() throws ScopedCycleException

void enter(Runnable logic) throws ScopedCycleException

void executeInArea(Runnable logic)
throws InaccessibleAreaException

❏ MemoryArea getMemoryArea(Object object)

❉♦ MemoryArea(long sizeInBytes)

❉♦ MemoryArea(long sizeInBytes, Runnable logic)

❉♦ MemoryArea(SizeEstimator size)

❉♦ MemoryArea(SizeEstimator size, Runnable logic)

long memoryConsumed()

long memoryRemaining()

Object newArray(Class type, int number)
throws IllegalAccessException, InstantiationEx-
ception

Object newInstance(Class type)
throws IllegalAccessException, InstantiationEx-
ception

Object newInstance(reflect.Constructor c, Object[] args)
throws IllegalAccessException, InstantiationEx-
ception

long size()

ALMANAC

235

Object
➥Throwable java.io.Serializable

➥Exception
➥RuntimeException

➥MemoryInUseException

Object
➥MemoryParameters

Object
➥Throwable java.io.Serializable

➥Exception
➥MemoryScopeException

MemoryInUseException javax.realtime

❉ MemoryInUseException()

❉ MemoryInUseException(String s)

MemoryParameters javax.realtime

long getAllocationRate()

long getMaxImmortal()

long getMaxMemoryArea()

❉ MemoryParameters(long maxMemoryArea,
long maxImmortal)
throws IllegalArgumentException

❉ MemoryParameters(long maxMemoryArea,
long maxImmortal, long allocationRate)
throws IllegalArgumentException

✍■ long NO_MAX

void setAllocationRate(long allocationRate)

boolean setAllocationRateIfFeasible(int allocationRate)

boolean setMaxImmortalIfFeasible(long maximum)

boolean setMaxMemoryAreaIfFeasible(long maximum)

MemoryScopeException javax.realtime

❉ MemoryScopeException()

❉ MemoryScopeException(String description)

CHAPTER 12 ALMANAC

236

Object
➥Throwable java.io.Serializable

➥Exception
➥MemoryTypeConflictException

Object
➥Throwable java.io.Serializable

➥Exception
➥MITViolationException

Object
➥MonitorControl

MemoryTypeConflictException javax.realtime

❉ MemoryTypeConflictException()

❉ MemoryTypeConflictException(String s)

MITViolationException javax.realtime

❉ MITViolationException()

❉ MITViolationException(String description)

MonitorControl javax.realtime

❏ MonitorControl getMonitorControl()

❏ MonitorControl getMonitorControl(Object monitor)

❉ MonitorControl()

❏ void setMonitorControl(MonitorControl policy)

❏ void setMonitorControl(Object monitor,
MonitorControl monCtl)

ALMANAC

237

Object
➥Thread Runnable

➥RealtimeThread Schedulable
➥NoHeapRealtimeThread

Object
➥Throwable java.io.Serializable

➥Exception
➥OffsetOutOfBoundsException

Object
➥AsyncEvent

➥Timer
➥OneShotTimer

NoHeapRealtimeThread javax.realtime

❉ NoHeapRealtimeThread(SchedulingParameters sp,
MemoryArea ma)
throws IllegalArgumentException

❉ NoHeapRealtimeThread(SchedulingParameters sp,
ReleaseParameters rp, MemoryArea ma)
throws IllegalArgumentException

❉ NoHeapRealtimeThread(SchedulingParameters sp,
ReleaseParameters rp, MemoryParameters mp,
MemoryArea ma,
ProcessingGroupParameters group,
Runnable logic)
throws IllegalArgumentException

void start()

OffsetOutOfBoundsException javax.realtime

❉ OffsetOutOfBoundsException()

❉ OffsetOutOfBoundsException(String description)

OneShotTimer javax.realtime

❉ OneShotTimer(HighResolutionTime time,
AsyncEventHandler handler)

❉ OneShotTimer(HighResolutionTime start, Clock clock,
AsyncEventHandler handler)

CHAPTER 12 ALMANAC

238

Object
➥ReleaseParameters

➥PeriodicParameters

Object
➥AsyncEvent

➥Timer
➥PeriodicTimer

Object
➥PhysicalMemoryManager

PeriodicParameters javax.realtime

RelativeTime getPeriod()

HighResolutionTime getStart()

❉ PeriodicParameters(HighResolutionTime start,
RelativeTime period, RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

boolean setIfFeasible(RelativeTime period, RelativeTime cost,
RelativeTime deadline)

void setPeriod(RelativeTime p)

void setStart(HighResolutionTime s)

PeriodicTimer javax.realtime

ReleaseParameters createReleaseParameters()

void fire()

AbsoluteTime getFireTime()

RelativeTime getInterval()

❉ PeriodicTimer(HighResolutionTime start,
RelativeTime interval,
AsyncEventHandler handler)

❉ PeriodicTimer(HighResolutionTime start,
RelativeTime interval, Clock clock,
AsyncEventHandler handler)

void setInterval(RelativeTime interval)

PhysicalMemoryManager javax.realtime

✍■ String ALIGNED

✍■ String BYTESWAP

✍■ String DMA

❏ boolean isRemovable(long address, long size)

ALMANAC

239

PhysicalMemoryTypeFilter

Object
➥POSIXSignalHandler

❏ boolean isRemoved(long address, long size)

❏ void onInsertion(long base, long size,
AsyncEventHandler aeh)

❏ void onRemoval(long base, long size,
AsyncEventHandler aeh)

■ void registerFilter(Object name,
PhysicalMemoryTypeFilter filter)
throws DuplicateFilterException, IllegalArgumen-
tException

■ void removeFilter(Object name)

✍■ String SHARED

PhysicalMemoryTypeFilter javax.realtime

boolean contains(long base, long size)

long find(long base, long size)

int getVMAttributes()

int getVMFlags()

void initialize(long base, long vBase, long size)

boolean isPresent(long base, long size)

boolean isRemovable()

void onInsertion(long base, long size,
AsyncEventHandler aeh)

void onRemoval(long base, long size,
AsyncEventHandler aeh)

long vFind(long base, long size)

POSIXSignalHandler javax.realtime

❏ void addHandler(int signal, AsyncEventHandler handler)

❉ POSIXSignalHandler()

❏ void removeHandler(int signal,
AsyncEventHandler handler)

❏ void setHandler(int signal, AsyncEventHandler handler)

✍■ int SIGABRT

✍■ int SIGALRM

✍■ int SIGBUS

✍■ int SIGCANCEL

✍■ int SIGCHLD

✍■ int SIGCLD

CHAPTER 12 ALMANAC

240

✍■ int SIGCONT

✍■ int SIGEMT

✍■ int SIGFPE

✍■ int SIGFREEZE

✍■ int SIGHUP

✍■ int SIGILL

✍■ int SIGINT

✍■ int SIGIO

✍■ int SIGIOT

✍■ int SIGKILL

✍■ int SIGLOST

✍■ int SIGLWP

✍■ int SIGPIPE

✍■ int SIGPOLL

✍■ int SIGPROF

✍■ int SIGPWR

✍■ int SIGQUIT

✍■ int SIGSEGV

✍■ int SIGSTOP

✍■ int SIGSYS

✍■ int SIGTERM

✍■ int SIGTHAW

✍■ int SIGTRAP

✍■ int SIGTSTP

✍■ int SIGTTIN

✍■ int SIGTTOU

✍■ int SIGURG

✍■ int SIGUSR1

✍■ int SIGUSR2

✍■ int SIGVTALRM

✍■ int SIGWAITING

✍■ int SIGWINCH

✍■ int SIGXCPU

✍■ int SIGXFSZ

ALMANAC

241

Object
➥MonitorControl

➥PriorityCeilingEmulation

Object
➥MonitorControl

➥PriorityInheritance

Object
➥SchedulingParameters

➥PriorityParameters

Object
➥Scheduler

➥PriorityScheduler

PriorityCeilingEmulation javax.realtime

int getDefaultCeiling()

❉ PriorityCeilingEmulation(int ceiling)

PriorityInheritance javax.realtime

❏ PriorityInheritance instance()

❉ PriorityInheritance()

PriorityParameters javax.realtime

int getPriority()

❉ PriorityParameters(int priority)

void setPriority(int priority)
throws IllegalArgumentException

String toString()

PriorityScheduler javax.realtime

♦ boolean addToFeasibility(Schedulable schedulable)

void fireSchedulable(Schedulable schedulable)

int getMaxPriority()

❏ int getMaxPriority(Thread thread)

int getMinPriority()

❏ int getMinPriority(Thread thread)

int getNormPriority()

❏ int getNormPriority(Thread thread)

String getPolicyName()

CHAPTER 12 ALMANAC

242

Object
➥ProcessingGroupParameters

❏ PriorityScheduler instance()

boolean isFeasible()

✍■ int MAX_PRIORITY

✍■ int MIN_PRIORITY

❉♦ PriorityScheduler()

♦ boolean removeFromFeasibility(Schedulable schedulable)

boolean setIfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory)

boolean setIfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

ProcessingGroupParameters javax.realtime

RelativeTime getCost()

AsyncEventHandler getCostOverrunHandler()

RelativeTime getDeadline()

AsyncEventHandler getDeadlineMissHandler()

RelativeTime getPeriod()

HighResolutionTime getStart()

❉ ProcessingGroupParameters(HighResolutionTime star
t, RelativeTime period, RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

void setCost(RelativeTime cost)

void setCostOverrunHandler(AsyncEventHandler handler)

void setDeadline(RelativeTime deadline)

void setDeadlineMissHandler(AsyncEventHandler handler)

boolean setIfFeasible(RelativeTime period, RelativeTime cost,
RelativeTime deadline)

void setPeriod(RelativeTime period)

void setStart(HighResolutionTime start)

ALMANAC

243

Object
➥HighResolutionTime Comparable

➥RelativeTime
➥RationalTime

Object
➥RawMemoryAccess

RationalTime javax.realtime

AbsoluteTime absolute(Clock clock, AbsoluteTime destination)

void addInterarrivalTo(AbsoluteTime destination)

int getFrequency()

RelativeTime getInterarrivalTime()

RelativeTime getInterarrivalTime(RelativeTime dest)

❉ RationalTime(int frequency)

❉ RationalTime(int frequency, long millis, int nanos)
throws IllegalArgumentException

❉ RationalTime(int frequency, RelativeTime interval)
throws IllegalArgumentException

void set(long millis, int nanos)
throws IllegalArgumentException

void setFrequency(int frequency)
throws ArithmeticException

RawMemoryAccess javax.realtime

byte getByte(long offset)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void getBytes(long offset, byte[] bytes, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

int getInt(long offset)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void getInts(long offset, int[] ints, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

long getLong(long offset)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void getLongs(long offset, long[] longs, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

long getMappedAddress()

CHAPTER 12 ALMANAC

244

short getShort(long offset)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void getShorts(long offset, short[] shorts, int low,
int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

long map()

long map(long base)

long map(long base, long size)

❉ RawMemoryAccess(Object type, long size)
throws SecurityException, OffsetOutOfBound-
sException, SizeOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException

❉ RawMemoryAccess(Object type, long base, long size)
throws SecurityException, OffsetOutOfBound-
sException, SizeOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException

void setByte(long offset, byte value)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setBytes(long offset, byte[] bytes, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setInt(long offset, int value)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setInts(long offset, int[] ints, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setLong(long offset, long value)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setLongs(long offset, long[] longs, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setShort(long offset, short value)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setShorts(long offset, short[] shorts, int low,
int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void unmap()

ALMANAC

245

Object
➥RawMemoryAccess

➥RawMemoryFloatAccess

RawMemoryFloatAccess javax.realtime

double getDouble(long offset)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void getDoubles(long offset, double[] doubles, int low,
int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

float getFloat(long offset)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void getFloats(long offset, float[] floats, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

❉ RawMemoryFloatAccess(Object type, long size)
throws SecurityException, OffsetOutOfBound-
sException, SizeOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException

❉ RawMemoryFloatAccess(Object type, long base,
long size) throws SecurityException, Off-
setOutOfBoundsException, SizeOutOfBound-
sException,
UnsupportedPhysicalMemoryException, Memo-
ryTypeConflictException

void setDouble(long offset, double value)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setDoubles(long offset, double[] doubles, int low,
int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setFloat(long offset, float value)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

void setFloats(long offset, float[] floats, int low, int number)
throws OffsetOutOfBoundsException, Size-
OutOfBoundsException

CHAPTER 12 ALMANAC

246

Object
➥RealtimeSecurity

Object
➥RealtimeSystem

Object
➥Thread Runnable

➥RealtimeThread Schedulable

RealtimeSecurity javax.realtime

void checkAccessPhysical() throws SecurityException

void checkAccessPhysicalRange(long base, long size)
throws SecurityException

void checkSetFilter() throws SecurityException

void checkSetScheduler() throws SecurityException

❉ RealtimeSecurity()

RealtimeSystem javax.realtime

✍■ byte BIG_ENDIAN

✍■ byte BYTE_ORDER

❏ GarbageCollector currentGC()

❏ int getConcurrentLocksUsed()

❏ int getMaximumConcurrentLocks()

❏ RealtimeSecurity getSecurityManager()

✍■ byte LITTLE_ENDIAN

❉ RealtimeSystem()

❏ void setMaximumConcurrentLocks(int numLocks)

❏ void setMaximumConcurrentLocks(int number,
boolean hard)

❏ void setSecurityManager(RealtimeSecurity manager)

RealtimeThread javax.realtime

boolean addIfFeasible()

boolean addToFeasibility()

❏ RealtimeThread currentRealtimeThread() throws ClassCastException

void deschedulePeriodic()

❏ MemoryArea getCurrentMemoryArea()

❏ int getInitialMemoryAreaIndex()

❏ int getMemoryAreaStackDepth()

ALMANAC

247

MemoryParameters getMemoryParameters()

❏ MemoryArea getOuterMemoryArea(int index)

ProcessingGroupPa-
rameters

getProcessingGroupParameters()

ReleaseParameters getReleaseParameters()

Scheduler getScheduler()

SchedulingParameters getSchedulingParameters()

void interrupt()

❉ RealtimeThread()

❉ RealtimeThread(SchedulingParameters scheduling)

❉ RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release)

❉ RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
Runnable logic)

boolean removeFromFeasibility()

void schedulePeriodic()

boolean setIfFeasible(ReleaseParameters release,
MemoryParameters memory)

boolean setIfFeasible(ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

boolean setIfFeasible(ReleaseParameters release,
ProcessingGroupParameters group)

void setMemoryParameters(MemoryParameters parameters
) throws IllegalThreadStateException

boolean setMemoryParametersIfFeasible(MemoryParameters
memParam)

void setProcessingGroupParameters(ProcessingGroupPar
ameters parameters)

boolean setProcessingGroupParametersIfFeasible(Processing
GroupParameters groupParameters)

void setReleaseParameters(ReleaseParameters parameters
) throws IllegalThreadStateException

boolean setReleaseParametersIfFeasible(ReleaseParameters r
elease)

void setScheduler(Scheduler scheduler)
throws IllegalThreadStateException

void setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters processingGroup)
throws IllegalThreadStateException

CHAPTER 12 ALMANAC

248

Object
➥HighResolutionTime Comparable

➥RelativeTime

Object
➥ReleaseParameters

void setSchedulingParameters(SchedulingParameters sche
duling) throws IllegalThreadStateException

boolean setSchedulingParametersIfFeasible(SchedulingParam
eters scheduling)

❏ void sleep(Clock clock, HighResolutionTime time)
throws InterruptedException

❏ void sleep(HighResolutionTime time)
throws InterruptedException

void start()

boolean waitForNextPeriod()
throws IllegalThreadStateException

RelativeTime javax.realtime

AbsoluteTime absolute(Clock clock)

AbsoluteTime absolute(Clock clock, AbsoluteTime destination)

RelativeTime add(long millis, int nanos)

RelativeTime add(long millis, int nanos, RelativeTime destination)

● RelativeTime add(RelativeTime time)

RelativeTime add(RelativeTime time, RelativeTime destination)

void addInterarrivalTo(AbsoluteTime destination)

RelativeTime getInterarrivalTime()

RelativeTime getInterarrivalTime(RelativeTime destination)

RelativeTime relative(Clock clock)

RelativeTime relative(Clock clock, RelativeTime destination)

❉ RelativeTime()

❉ RelativeTime(long millis, int nanos)

❉ RelativeTime(RelativeTime time)

● RelativeTime subtract(RelativeTime time)

RelativeTime subtract(RelativeTime time, RelativeTime destination)

String toString()

ReleaseParameters javax.realtime

RelativeTime getCost()

AsyncEventHandler getCostOverrunHandler()

RelativeTime getDeadline()

ALMANAC

249

Object
➥Throwable java.io.Serializable

➥Error
➥ResourceLimitError

Schedulable Runnable

AsyncEventHandler getDeadlineMissHandler()

❉♦ ReleaseParameters()

❉♦ ReleaseParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

void setCost(RelativeTime cost)

void setCostOverrunHandler(AsyncEventHandler handler)

void setDeadline(RelativeTime deadline)

void setDeadlineMissHandler(AsyncEventHandler handler)

boolean setIfFeasible(RelativeTime cost,
RelativeTime deadline)

ResourceLimitError javax.realtime

❉ ResourceLimitError()

❉ ResourceLimitError(String description)

Schedulable javax.realtime

boolean addToFeasibility()

MemoryParameters getMemoryParameters()

ProcessingGroupPa-
rameters

getProcessingGroupParameters()

ReleaseParameters getReleaseParameters()

Scheduler getScheduler()

SchedulingParameters getSchedulingParameters()

boolean removeFromFeasibility()

void setMemoryParameters(MemoryParameters memory)

boolean setMemoryParametersIfFeasible(MemoryParameters
memParam)

void setProcessingGroupParameters(ProcessingGroupPar
ameters groupParameters)

boolean setProcessingGroupParametersIfFeasible(Processing
GroupParameters groupParameters)

void setReleaseParameters(ReleaseParameters release)

boolean setReleaseParametersIfFeasible(ReleaseParameters r
elease)

CHAPTER 12 ALMANAC

250

Object
➥Scheduler

Object
➥SchedulingParameters

Object
➥Throwable java.io.Serializable

void setScheduler(Scheduler scheduler)
throws IllegalThreadStateException

void setScheduler(Scheduler scheduler,
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memoryParameters,
ProcessingGroupParameters processingGroup)
throws IllegalThreadStateException

void setSchedulingParameters(SchedulingParameters sche
duling)

boolean setSchedulingParametersIfFeasible(SchedulingParam
eters scheduling)

Scheduler javax.realtime

❍♦ boolean addToFeasibility(Schedulable schedulable)

❍ void fireSchedulable(Schedulable schedulable)

❏ Scheduler getDefaultScheduler()

❍ String getPolicyName()

❍ boolean isFeasible()

❍♦ boolean removeFromFeasibility(Schedulable schedulable)

❉♦ Scheduler()

❏ void setDefaultScheduler(Scheduler scheduler)

boolean setIfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory)

boolean setIfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group)

SchedulingParameters javax.realtime

❉ SchedulingParameters()

ScopedCycleException javax.realtime

ALMANAC

251

➥Exception
➥RuntimeException

➥ScopedCycleException

Object
➥MemoryArea

➥ScopedMemory

❉ ScopedCycleException()

❉ ScopedCycleException(String description)

ScopedMemory javax.realtime

void enter() throws ScopedCycleException

void enter(Runnable logic) throws ScopedCycleException

long getMaximumSize()

Object getPortal()

int getReferenceCount()

void join() throws InterruptedException

void join(HighResolutionTime time)
throws InterruptedException

void joinAndEnter() throws InterruptedException, Scoped-
CycleException

void joinAndEnter(HighResolutionTime time)
throws InterruptedException, ScopedCycleEx-
ception

void joinAndEnter(Runnable logic)
throws InterruptedException, ScopedCycleEx-
ception

void joinAndEnter(Runnable logic,
HighResolutionTime time)
throws InterruptedException, ScopedCycleEx-
ception

❉ ScopedMemory(long size)

❉ ScopedMemory(long size, Runnable r)

❉ ScopedMemory(SizeEstimator size)

❉ ScopedMemory(SizeEstimator size, Runnable r)

void setPortal(Object object)

String toString()

CHAPTER 12 ALMANAC

252

Object
➥SizeEstimator

Object
➥Throwable java.io.Serializable

➥Exception
➥SizeOutOfBoundsException

Object
➥ReleaseParameters

➥AperiodicParameters
➥SporadicParameters

SizeEstimator javax.realtime

long getEstimate()

void reserve(Class c, int n)

void reserve(SizeEstimator s)

void reserve(SizeEstimator s, int n)

❉ SizeEstimator()

SizeOutOfBoundsException javax.realtime

❉ SizeOutOfBoundsException()

❉ SizeOutOfBoundsException(String description)

SporadicParameters javax.realtime

✍■ String arrivalTimeQueueOverflowExcept

✍■ String arrivalTimeQueueOverflowIgnore

✍■ String arrivalTimeQueueOverflowReplace

✍■ String arrivalTimeQueueOverflowSave

String getArrivalTimeQueueOverflowBehavior()

String getArrivalTimeQueueOverflowBehavior()

int getInitialArrivalTimeQueueLength()

int getInitialArrivalTimeQueueLength()

RelativeTime getMinimumInterarrival()

String getMitViolationBehavior()

String getMitViolationBehavior()

✍■ String mitViolationExcept

✍■ String mitViolationIgnore

✍■ String mitViolationReplace

✍■ String mitViolationSave

ALMANAC

253

Object
➥Throwable java.io.Serializable

➥Error
➥ThrowBoundaryError

Object
➥Throwable java.io.Serializable

➥Exception
➥InterruptedException

➥AsynchronouslyInterruptedException
➥Timed

void setArrivalTimeQueueOverflowBehavior(String behavio
r)

void setArrivalTimeQueueOverflowBehavior(String behavio
r)

boolean setIfFeasible(RelativeTime interarrival,
RelativeTime cost, RelativeTime deadline)

void setInitialArrivalTimeQueueLength(int initial)

void setInitialArrivalTimeQueueLength(int initial)

void setMinimumInterarrival(RelativeTime minimum)

void setMitViolationBehavior(String behavior)

void setMitViolationBehavior(String behavior)

❉ SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost, RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

ThrowBoundaryError javax.realtime

❉ ThrowBoundaryError()

❉ ThrowBoundaryError(String description)

Timed javax.realtime

boolean doInterruptible(Interruptible logic)

void resetTime(HighResolutionTime time)

❉ Timed(HighResolutionTime time)
throws IllegalArgumentException

CHAPTER 12 ALMANAC

254

Object
➥AsyncEvent

➥Timer

Object
➥Throwable java.io.Serializable

➥Exception
➥RuntimeException

➥UnknownHappeningException

Object
➥Throwable java.io.Serializable

➥Exception
➥UnsupportedPhysicalMemoryException

Timer javax.realtime

ReleaseParameters createReleaseParameters()

void destroy()

void disable()

void enable()

Clock getClock()

AbsoluteTime getFireTime()

boolean isRunning()

void reschedule(HighResolutionTime time)

void start()

boolean stop()

❉♦ Timer(HighResolutionTime t, Clock c,
AsyncEventHandler handler)

UnknownHappeningException javax.realtime

❉ UnknownHappeningException()

❉ UnknownHappeningException(String description)

UnsupportedPhysicalMemoryEx-
ception

javax.realtime

❉ UnsupportedPhysicalMemoryException()

❉ UnsupportedPhysicalMemoryException(String descrip
tion)

ALMANAC

255

Object
➥MemoryArea

➥ScopedMemory
➥VTMemory

Object
➥MemoryArea

➥ScopedMemory
➥VTPhysicalMemory

VTMemory javax.realtime

long getMaximumSize()

String toString()

❉ VTMemory(long initialSizeInBytes,
long maxSizeInBytes)

❉ VTMemory(long initialSizeInBytes,
long maxSizeInBytes, Runnable logic)

❉ VTMemory(SizeEstimator initial,
SizeEstimator maximum)

❉ VTMemory(SizeEstimator initial,
SizeEstimator maximum, Runnable logic)

VTPhysicalMemory javax.realtime

String toString()

❉ VTPhysicalMemory(Object type, long size)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException

❉ VTPhysicalMemory(Object type, long base, long size)
throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ VTPhysicalMemory(Object type, long base, long size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, OffsetOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ VTPhysicalMemory(Object type, long size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, UnsupportedPhysi-
calMemoryException,
MemoryTypeConflictException

CHAPTER 12 ALMANAC

256

Object
➥WaitFreeDequeue

Object
➥WaitFreeReadQueue

❉ VTPhysicalMemory(Object type, long base,
SizeEstimator size) throws SecurityException,
SizeOutOfBoundsException, OffsetOutOfBound-
sException, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException,
MemoryInUseException

❉ VTPhysicalMemory(Object type, long base,
SizeEstimator size, Runnable logic)
throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsup-
portedPhysicalMemoryException,
MemoryTypeConflictException, MemoryInUseEx-
ception

❉ VTPhysicalMemory(Object type, SizeEstimator size)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryExcep-
tion, MemoryTypeConflictException

❉ VTPhysicalMemory(Object type, SizeEstimator size,
Runnable logic) throws SecurityException, Size-
OutOfBoundsException, UnsupportedPhysi-
calMemoryException,
MemoryTypeConflictException

WaitFreeDequeue javax.realtime

Object blockingRead()

boolean blockingWrite(Object object)
throws MemoryScopeException

boolean force(Object object)

Object nonBlockingRead()

boolean nonBlockingWrite(Object object)
throws MemoryScopeException

❉ WaitFreeDequeue(Thread writer, Thread reader,
int maximum, MemoryArea area)
throws IllegalArgumentException, IllegalAccess-
Exception, ClassNotFoundException, Instantia-
tionException

WaitFreeReadQueue javax.realtime

void clear()

boolean isEmpty()

boolean isFull()

Object read()

ALMANAC

257

Object
➥WaitFreeWriteQueue

int size()

void waitForData()

❉ WaitFreeReadQueue(Thread writer, Thread reader,
int maximum, MemoryArea memory)
throws IllegalArgumentException, Instantiation-
Exception, ClassNotFoundException, IllegalAc-
cessException

❉ WaitFreeReadQueue(Thread writer, Thread reader,
int maximum, MemoryArea memory,
boolean notify)
throws IllegalArgumentException, Instantiation-
Exception, ClassNotFoundException, IllegalAc-
cessException

boolean write(Object object) throws MemoryScopeException

WaitFreeWriteQueue javax.realtime

void clear()

boolean force(Object object) throws MemoryScopeException

boolean isEmpty()

boolean isFull()

Object read()

int size()

❉ WaitFreeWriteQueue(Thread writer, Thread reader,
int maximum, MemoryArea memory)
throws IllegalArgumentException, Instantiation-
Exception, ClassNotFoundException, IllegalAc-
cessException

boolean write(Object object) throws MemoryScopeException

CHAPTER 12 ALMANAC

258

259

Bibliography
1. J.H. Anderson, S. Ramamurthy, and K. Jeffay, Real-Time Computing with Lock-

Free Shared Objects, IEEE Real-Time Systems Symposium 1995, pp. 28-37.

2. J. Anderson, R. Jain, S. Ramamurthy, Wait-Free Object-Sharing Schemes for
Real-Time Uniprocessors and Multiprocessors, IEEE Real-Time Systems Sym-
posium 1997, pp. 111-122.

3. H. Attiya and N.A. Lynch, Time Bounds for Real-Time Process Control in the
Presence of Timing Uncertainty, IEEE Real-Time Systems Symposium 1989, pp.
268-284.

4. T.P. Baker and A. Shaw, The Cyclic Executive Model and Ada, IEEE Real-Time
Systems Symposium 1988, pp. 120-129.

5. T.P. Baker, A Stack-Based Resource Allocation Policy for Realtime Processes,
IEEE Real-Time Systems Symposium 1990, pp. 191-200.

6. T. Baker and O. Pazy, Real-Time Features for Ada 9X, IEEE Real-Time Systems
Symposium 1991, pp. 172-180.

7. S.K. Baruah, A.K. Mok, and L.E. Rosier, Preemptively Scheduling Hard-Real-
Time Sporadic Tasks on One Processor, IEEE Real-Time Systems Symposium
1990, pp. 182-190.

8. L. Carnahan and M. Ruark (eds.), Requirements for Real-Time Extensions for the
Java Platform, National Institute of Standards and Technology, September 1999.
Available at http://www.nist.gov/rt-java.

9. P. Chan, R. Lee, and D. Kramer, The Java Class Libraries, Second Edition, Vol-
ume 1, Supplement for the Java 2 Platform, Standard Edition, v1.2, Addison-
Wesley, 1999.

10. M.-Z. Chen and K.J. Lin, A Priority Ceiling Protocol for Multiple-Instance
Resources, IEEE Real-Time Systems Symposium 1991, pp. 140-149.

11. S. Cheng, J.A. Stankovic, and K. Ramamritham, Dynamic Scheduling of Groups
of Tasks with Precedence Constraints in Distributed Hard Real-Time Systems,
IEEE Real-Time Systems Symposium 1986, pp. 166-174.

12. R.I. Davis, K. W. Tindell, and A. Burns, Scheduling Slack Time in Fixed Priority
Preemptive Systems, IEEE Real-Time Systems Symposium 1993, pp. 222-231.

13. B.O. Gallmeister and C. Lanier, Early Experience with POSIX 1003.4 and POSIX
1003.4a, IEEE Real-Time Systems Symposium 1991, pp. 190-198.

14. J. Gosling, B. Joy, and G. Steele, The Java Language Specification, Addison-

BIBLIOGRAPHY

260

Wesley, 1996.

15. M.L. Green, E.Y.S. Lee, S. Majumdar, D.C. Shannon, A Distributed Real Time
Operating System, IEEE Real-Time Systems Symposium 1980, pp. 175-184.

16. M.G. Harbour, M.H. Klein, and J.P. Lehoczky, Fixed Priority Scheduling of Peri-
odic Tasks with Varying Execution Priority, IEEE Real-Time Systems Sympo-
sium 1991, pp. 116-128.

17. F. Jahanian and A.K. Mok, A Graph-Theoretic Approach for Timing Analysis in
Real Time Logic, IEEE Real-Time Systems Symposium 1986, pp. 98-108.

18. K. Jeffay, Analysis of a Synchronization and Scheduling Discipline for Real-Time
Tasks with Preemption Constraints, IEEE Real-Time Systems Symposium 1989,
pp. 295-307.

19. K. Jeffay, D.F. Stanat, and C.U. Martel , On Non-Preemptive Scheduling of Peri-
odic and Sporadic Tasks, IEEE Real-Time Systems Symposium 1991, pp. 129-
139.

20. K. Jeffay, Scheduling Sporadic Tasks with Shared Resources in Hard-Real-Time
Systems, IEEE Real-Time Systems Symposium 1992, pp. 89-99.

21. K. Jeffay and D.L. Stone, Accounting for Interrupt Handling Costs in Dynamic
Priority Task Systems, IEEE Real-Time Systems Symposium 1993, pp. 212-221.

22. K. Jeffay and D. Bennett, A Rate-Based Execution Abstraction for Multimedia
Computing, Proceedings of the 5th International Workshop on Network and
Operating System Support for Digital Audio and Video (Apr. 1995).

23. E.D. Jensen, C.D. Locke, and H. Tokuda, A Time-Driven Scheduling Model for
Real-Time Operating Systems, IEEE Real-Time Systems Symposium 1985, pp.
112-133.

24. Mark S. Johnstone, Non-Compacting Memory Allocation and Real-Time Garbage
Collection, Ph.D. dissertation, The University of Texas at Austin, December
1997.

25. M.B. Jones, Adaptive Real-Time Resource Management Supporting Modular
Composition of Digital Multimedia Services, Proceedings of the 4th Interna-
tional Workshop on Network and Operating System Support for Digital Audio
and Video (Nov. 1993).

26. M.B. Jones, P.J. Leach, R.P. Draves, and J.S. Barrera, Support for User-centric
Modular Real-Time Resource Management in the Rialto Operating System, Pro-
ceedings of the 5th International Workshop on Network and Operating System
Support for Digital Audio and Video (Apr. 1995).

27. I. Lee and S.B. Davidson, Protocols for Timed Synchronous Process Communica-
tions, IEEE Real-Time Systems Symposium 1986, pp. 120-137.

261

28. J.P. Lehoczky, L. Sha, and J.K. Strosnider, Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments, IEEE Real-Time Systems Symposium 1987,
pp. 261-270.

29. J. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior, IEEE Real-Time Systems
Symposium 1989, pp. 166-171.

30. J.P. Lehoczky and T.P. Baker, Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines, IEEE Real-Time Systems Symposium 1990, pp. 201-
213.

31. J.P. Lehoczky and S. Ramos-Thuel, An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive System, IEEE Real-Time Systems
Symposium 1992, pp. 110-124.

32. K.-J. Lin, S. Natarajan, and J.W.-S. Liu, Imprecise Results: Utilizing Partial
Computations in Real-Time Systems, IEEE Real-Time Systems Symposium 1987,
pp. 210-218.

33. T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Second Edi-
tion, Addison-Wesley, 1999.

34. C.L. Liu and J.W. Layland, Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment, JACM 20, 1 (Jan. 1973), pp. 46-61.

35. J.W.-S. Liu, K.-J. Lin, and S. Natarajan, Scheduling Real-Time, Periodic Jobs
Using Imprecise Results, IEEE Real-Time Systems Symposium 1987, pp. 252-
260.

36. C. Lizzi, Enabling Deadline Scheduling for Java Real-Time Computing, IEEE
Real-Time Systems Symposium 1999.

37. C.D. Locke, D.R. Vogel, and T.J. Mesler, Building a Predictable Avionics Plat-
form in Ada: A Case Study, IEEE Real-Time Systems Symposium 1991, pp. 180-
189.

38. N. Lynch and N. Shavit, Timing-Based Mutual Exclusion, IEEE Real-Time Sys-
tems Symposium 1992, pp. 2-11.

39. C.W. Mercer and H. Tokuda, Preemptibility in Real-Time Operating Systems,
IEEE Real-Time Systems Symposium 1992, pp. 78-88.

40. C.W. Mercer, S. Savage, and H. Tokuda, Processor Capacity Reserves for Multi-
media Operating Systems, Proceedings of the IEEE International Conference on
Multimedia Computing and Systems (May 1994).

41. A. Miyoshi, T. Kitayama, H. Tokuda, Implementation and Evaluation of Real-
Time Java Threads, IEEE Real-Time Systems Symposium 1997, pp. 166-175.

42. J.S. Ostroff and W.M. Wonham, Modelling, Specifying and Verifying Real-Time

BIBLIOGRAPHY

262

Embedded Computer Systems, IEEE Real-Time Systems Symposium 1987, pp.
124-132.

43. Portable Operating System Interface (POSIX®) Part 1: System Application Pro-
gram Interface, International Standard ISO/IEC 9945-1: 1996 (E) IEEE Std
1003.1, 1996 Edition, The Institute of Electrical and Electronics Engineers, Inc.
1996.

44. R. Rajkumar, L. Sha, and J.P. Lehoczky, On Countering the Effects of Cycle-
Stealing in a Hard Real-Time Environment, IEEE Real-Time Systems Sympo-
sium 1987, pp. 2-11.

45. R. Rajkumar, L. Sha, and J.P. Lehoczky, Real-Time Synchronization Protocols for
Multiprocessors, IEEE Real-Time Systems Symposium 1988, pp. 259-271.

46. S. Ramos-Thuel and J.P. Lehoczky, On-Line Scheduling of Hard Deadline Aperi-
odic Tasks in Fixed-Priority Systems, IEEE Real-Time Systems Symposium
1993, pp. 160-171.

47. L. Sha, J.P. Lehoczky, and R. Rajkumar, Solutions for Some Practical Problems
in Prioritized Preemptive Scheduling, IEEE Real-Time Systems Symposium
1986, pp. 181-193.

48. L. Sha, R. Rajkumar, and J. Lehoczky, Priority Inheritance Protocols: An
Approach to Real-Time Synchronization, IEEE Transactions on Computers, Sept.,
1990.

49. L. Sha, R. Rajkumar, and J. Lehoczky, Real-Time Computing using Futurebus+,
IEEE Micro, June, 1991.

50. A.C. Shaw, Software Clocks, Concurrent Programming, and Slice-Based Sched-
uling, IEEE Real-Time Systems Symposium 1986, pp. 14-19.

51. F. Siebert, Real-Time Garbage Collection in Multi-Threaded Systems on a Single
Processor, IEEE Real-Time Systems Symposium 1999.

52. B. Sprunt, J. Lehoczky, and L. Sha, Exploiting Unused Periodic Time for Aperi-
odic Service Using the Extended Priority Exchange Algorithm, IEEE Real-Time
Systems Symposium 1988, pp. 251-258.

53. Sun Microsystems, Inc., The Java Community Process Manual, December 1998,
Available at http://java.sun.com/aboutJava/communityprocess/
java_community_process.html.

54. S.R. Thuel and J.P. Lehoczky, Algorithms for Scheduling Hard Aperiodic Tasks in
Fixed-Priority Systems Using Slack Stealing, IEEE Real-Time Systems Sympo-
sium 1994, pp. 22-35.

55. H. Tokuda, J.W. Wendorf, and H.-Y. Wang, Implementation of a Time-Driven
Scheduler for ReaI-Time Operating System, IEEE Real-Time Systems Sympo-

263

sium 1987, pp. 271-280.

56. D.M. Washabaugh and D. Kafura, Incremental Garbage Collection of Concurrent
Objects for Real-Time Applications, IEEE Real-Time Systems Symposium 1990,
pp. 21-31.

57. P.R. Wilson, M.S. Johnstone, M. Neely, and D. Boles, Dynamic Storage Alloca-
tion: A Survey and Critical Review, In International Workshop on Memory Man-
agement, Kinross, Scotland, UK, September 1995.

58. W. Zhao and K. Ramamritham, A Virtual Time CSMA Protocol for Hard Real
Time Communication, IEEE Real-Time Systems Symposium 1986, pp. 120-127.

59. W. Zhao and J.A. Stankovic, Performance Analysis of FCFS and Improved FCFS
Scheduling Algorithms for Dynamic Real-Time Computer Systems, IEEE Real-
Time Systems Symposium 1989, pp. 156-165.

BIBLIOGRAPHY

264

265

Index

A
absolute(Clock)

of javax.realtime.AbsoluteTime 153
of javax.realtime.HighResolutionTime

149
of javax.realtime.RelativeTime 157

absolute(Clock, AbsoluteTime)
of javax.realtime.AbsoluteTime 153
of javax.realtime.HighResolutionTime

149
of javax.realtime.RationalTime 162
of javax.realtime.RelativeTime 157

AbsoluteTime
of javax.realtime 152

AbsoluteTime()
of javax.realtime.AbsoluteTime 152

AbsoluteTime(AbsoluteTime)
of javax.realtime.AbsoluteTime 153

AbsoluteTime(Date)
of javax.realtime.AbsoluteTime 153

AbsoluteTime(long, int)
of javax.realtime.AbsoluteTime 153

add(long, int)
of javax.realtime.AbsoluteTime 154
of javax.realtime.RelativeTime 158

add(long, int, AbsoluteTime)
of javax.realtime.AbsoluteTime 154

add(long, int, RelativeTime)
of javax.realtime.RelativeTime 158

add(RelativeTime)
of javax.realtime.AbsoluteTime 154
of javax.realtime.RelativeTime 158

add(RelativeTime, AbsoluteTime)
of javax.realtime.AbsoluteTime 154

add(RelativeTime, RelativeTime)
of javax.realtime.RelativeTime 158

addHandler(AsyncEventHandler)
of javax.realtime.AsyncEvent 181

addHandler(int, AsyncEventHandler)
of javax.realtime.POSIXSignalHandler

208

addIfFeasible()
of javax.realtime.AsyncEventHandler

188
of javax.realtime.RealtimeThread 25

addInterarrivalTo(AbsoluteTime)
of javax.realtime.RationalTime 162
of javax.realtime.RelativeTime 159

addToFeasibility()
of javax.realtime.AsyncEventHandler

188
of javax.realtime.RealtimeThread 25
of javax.realtime.Schedulable 41

addToFeasibility(Schedulable)
of javax.realtime.PriorityScheduler 48
of javax.realtime.Scheduler 45

ALIGNED
of javax.realtime.PhysicalMemoryMan-

ager 95
AperiodicParameters

of javax.realtime 59
AperiodicParameters(RelativeTime, Rela-

tiveTime, AsyncEventHandler,
AsyncEventHandler)

of javax.realtime.AperiodicParameters 60
arrivalTimeQueueOverflowExcept

of javax.realtime.SporadicParameters 62
arrivalTimeQueueOverflowIgnore

of javax.realtime.SporadicParameters 62
arrivalTimeQueueOverflowReplace

of javax.realtime.SporadicParameters 62
arrivalTimeQueueOverflowSave

of javax.realtime.SporadicParameters 63
AsyncEvent

of javax.realtime 181
AsyncEvent()

of javax.realtime.AsyncEvent 181
AsyncEventHandler

of javax.realtime 183
AsyncEventHandler()

of javax.realtime.AsyncEventHandler
184

INDEX

266

AsyncEventHandler(boolean)
of javax.realtime.AsyncEventHandler

184
AsyncEventHandler(boolean, Runnable)

of javax.realtime.AsyncEventHandler
185

AsyncEventHandler(Runnable)
of javax.realtime.AsyncEventHandler

185
AsyncEventHandler(SchedulingParame-

ters, ReleaseParameters, Memory-
Parameters, MemoryArea,
ProcessingGroupParameters, bool-
ean)

of javax.realtime.AsyncEventHandler
185

AsyncEventHandler(SchedulingParame-
ters, ReleaseParameters, Memory-
Parameters, MemoryArea,
ProcessingGroupParameters, bool-
ean, Runnable)

of javax.realtime.AsyncEventHandler
186

AsyncEventHandler(SchedulingParame-
ters, ReleaseParameters, Memory-
Parameters, MemoryArea,
ProcessingGroupParameters, Run-
nable)

of javax.realtime.AsyncEventHandler
187

AsynchronouslyInterruptedException
of javax.realtime 198

AsynchronouslyInterruptedException()
of javax.realtime.AsynchronouslyInter-

ruptedException 199

B
BIG_ENDIAN

of javax.realtime.RealtimeSystem 210
bindTo(String)

of javax.realtime.AsyncEvent 181
blockingRead()

of javax.realtime.WaitFreeDequeue 144
blockingWrite(Object)

of javax.realtime.WaitFreeDequeue 145
BoundAsyncEventHandler

of javax.realtime 195

BoundAsyncEventHandler()
of javax.realtime.BoundAsyn-

cEventHandler 196
BoundAsyncEventHandler(SchedulingPa-

rameters, ReleaseParameters,
MemoryParameters, Memor-
yArea, ProcessingGroupParame-
ters, boolean, Runnable)

of javax.realtime.BoundAsyn-
cEventHandler 196

BYTE_ORDER
of javax.realtime.RealtimeSystem 210

BYTESWAP
of javax.realtime.PhysicalMemoryMan-

ager 95

C
checkAccessPhysical()

of javax.realtime.RealtimeSecurity 209
checkAccessPhysicalRange(long, long)

of javax.realtime.RealtimeSecurity 209
checkSetFilter()

of javax.realtime.RealtimeSecurity 209
checkSetScheduler()

of javax.realtime.RealtimeSecurity 210
clear()

of javax.realtime.WaitFreeReadQueue
143

of javax.realtime.WaitFreeWriteQueue
140

Clock
of javax.realtime 166

Clock()
of javax.realtime.Clock 167

compareTo(HighResolutionTime)
of javax.realtime.HighResolutionTime

149
compareTo(Object)

of javax.realtime.HighResolutionTime
149

contains(long, long)
of javax.realtime.PhysicalMemoryType-

Filter 98
createReleaseParameters()

of javax.realtime.AsyncEvent 182
of javax.realtime.PeriodicTimer 172
of javax.realtime.Timer 169

INDEX

267

currentGC()
of javax.realtime.RealtimeSystem 211

currentRealtimeThread()
of javax.realtime.RealtimeThread 25

D
deschedulePeriodic()

of javax.realtime.RealtimeThread 26
destroy()

of javax.realtime.Timer 169
disable()

of javax.realtime.AsynchronouslyInter-
ruptedException 199

of javax.realtime.Timer 169
DMA

of javax.realtime.PhysicalMemoryMan-
ager 95

doInterruptible(Interruptible)
of javax.realtime.AsynchronouslyInter-

ruptedException 199
of javax.realtime.Timed 201

DuplicateFilterException
of javax.realtime 214

DuplicateFilterException()
of javax.realtime.DuplicateFilterExcep-

tion 214
DuplicateFilterException(String)

of javax.realtime.DuplicateFilterExcep-
tion 214

E
enable()

of javax.realtime.AsynchronouslyInter-
ruptedException 200

of javax.realtime.Timer 169
enter()

of javax.realtime.MemoryArea 78
of javax.realtime.ScopedMemory 86

enter(Runnable)
of javax.realtime.MemoryArea 78
of javax.realtime.ScopedMemory 86

equals(HighResolutionTime)
of javax.realtime.HighResolutionTime

150
equals(Object)

of javax.realtime.HighResolutionTime
150

executeInArea(Runnable)
of javax.realtime.MemoryArea 79

F
find(long, long)

of javax.realtime.PhysicalMemoryType-
Filter 98

fire()
of javax.realtime.AsyncEvent 182
of javax.realtime.AsynchronouslyInter-

ruptedException 200
of javax.realtime.PeriodicTimer 173

fireSchedulable(Schedulable)
of javax.realtime.PriorityScheduler 48
of javax.realtime.Scheduler 46

force(Object)
of javax.realtime.WaitFreeDequeue 145
of javax.realtime.WaitFreeWriteQueue

140

G
GarbageCollector

of javax.realtime 132
GarbageCollector()

of javax.realtime.GarbageCollector 132
getAllocationRate()

of javax.realtime.MemoryParameters 131
getAndClearPendingFireCount()

of javax.realtime.AsyncEventHandler
188

getAndDecrementPendingFireCount()
of javax.realtime.AsyncEventHandler

188
getAndIncrementPendingFireCount()

of javax.realtime.AsyncEventHandler
189

getArrivalTimeQueueOverflowBehavior()
of javax.realtime.SporadicParameters 64,

65
getByte(long)

of javax.realtime.RawMemoryAccess
120

getBytes(long, byte[], int, int)
of javax.realtime.RawMemoryAccess

120
getClock()

of javax.realtime.Timer 170

INDEX

268

getConcurrentLocksUsed()
of javax.realtime.RealtimeSystem 211

getCost()
of javax.realtime.ProcessingGroupParam-

eters 68
of javax.realtime.ReleaseParameters 55

getCostOverrunHandler()
of javax.realtime.ProcessingGroupParam-

eters 68
of javax.realtime.ReleaseParameters 55

getCurrentMemoryArea()
of javax.realtime.RealtimeThread 26

getDate()
of javax.realtime.AbsoluteTime 155

getDeadline()
of javax.realtime.ProcessingGroupParam-

eters 68
of javax.realtime.ReleaseParameters 55

getDeadlineMissHandler()
of javax.realtime.ProcessingGroupParam-

eters 68
of javax.realtime.ReleaseParameters 55

getDefaultCeiling()
of javax.realtime.PriorityCeilingEmula-

tion 138
getDefaultScheduler()

of javax.realtime.Scheduler 46
getDouble(long)

of javax.realtime.RawMemoryFloatAc-
cess 127

getDoubles(long, double[], int, int)
of javax.realtime.RawMemoryFloatAc-

cess 127
getEstimate()

of javax.realtime.SizeEstimator 83
getFireTime()

of javax.realtime.PeriodicTimer 173
of javax.realtime.Timer 170

getFloat(long)
of javax.realtime.RawMemoryFloatAc-

cess 127
getFloats(long, float[], int, int)

of javax.realtime.RawMemoryFloatAc-
cess 127

getFrequency()
of javax.realtime.RationalTime 162

getGeneric()
of javax.realtime.AsynchronouslyInter-

ruptedException 200

getImportance()
of javax.realtime.ImportanceParameters

53
getInitialArrivalTimeQueueLength()

of javax.realtime.SporadicParameters 65
getInitialMemoryAreaIndex()

of javax.realtime.RealtimeThread 26
getInt(long)

of javax.realtime.RawMemoryAccess
120

getInterarrivalTime()
of javax.realtime.RationalTime 162
of javax.realtime.RelativeTime 159

getInterarrivalTime(RelativeTime)
of javax.realtime.RationalTime 162
of javax.realtime.RelativeTime 159

getInterval()
of javax.realtime.PeriodicTimer 173

getInts(long, int[], int, int)
of javax.realtime.RawMemoryAccess

120
getLong(long)

of javax.realtime.RawMemoryAccess
121

getLongs(long, long[], int, int)
of javax.realtime.RawMemoryAccess

121
getMappedAddress()

of javax.realtime.RawMemoryAccess
121

getMaxImmortal()
of javax.realtime.MemoryParameters 131

getMaximumConcurrentLocks()
of javax.realtime.RealtimeSystem 211

getMaximumSize()
of javax.realtime.LTMemory 94
of javax.realtime.ScopedMemory 87
of javax.realtime.VTMemory 92

getMaxMemoryArea()
of javax.realtime.MemoryParameters 131

getMaxPriority()
of javax.realtime.PriorityScheduler 48

getMaxPriority(Thread)
of javax.realtime.PriorityScheduler 48

getMemoryArea()
of javax.realtime.AsyncEventHandler

189
getMemoryArea(Object)

of javax.realtime.MemoryArea 79

INDEX

269

getMemoryAreaStackDepth()
of javax.realtime.RealtimeThread 26

getMemoryParameters()
of javax.realtime.AsyncEventHandler

189
of javax.realtime.RealtimeThread 26
of javax.realtime.Schedulable 42

getMilliseconds()
of javax.realtime.HighResolutionTime

150
getMinimumInterarrival()

of javax.realtime.SporadicParameters 65
getMinPriority()

of javax.realtime.PriorityScheduler 49
getMinPriority(Thread)

of javax.realtime.PriorityScheduler 49
getMitViolationBehavior()

of javax.realtime.SporadicParameters 65
getMonitorControl()

of javax.realtime.MonitorControl 137
getMonitorControl(Object)

of javax.realtime.MonitorControl 137
getNanoseconds()

of javax.realtime.HighResolutionTime
150

getNormPriority()
of javax.realtime.PriorityScheduler 49

getNormPriority(Thread)
of javax.realtime.PriorityScheduler 49

getOuterMemoryArea(int)
of javax.realtime.RealtimeThread 26

getPendingFireCount()
of javax.realtime.AsyncEventHandler

189
getPeriod()

of javax.realtime.PeriodicParameters 58
of javax.realtime.ProcessingGroupParam-

eters 68
getPolicyName()

of javax.realtime.PriorityScheduler 49
of javax.realtime.Scheduler 46

getPortal()
of javax.realtime.ScopedMemory 87

getPreemptionLatency()
of javax.realtime.GarbageCollector 133

getPriority()
of javax.realtime.PriorityParameters 52

getProcessingGroupParameters()
of javax.realtime.AsyncEventHandler

189
of javax.realtime.RealtimeThread 27
of javax.realtime.Schedulable 42

getRealtimeClock()
of javax.realtime.Clock 167

getReferenceCount()
of javax.realtime.ScopedMemory 87

getReleaseParameters()
of javax.realtime.AsyncEventHandler

190
of javax.realtime.RealtimeThread 27
of javax.realtime.Schedulable 42

getResolution()
of javax.realtime.Clock 167

getScheduler()
of javax.realtime.AsyncEventHandler

190
of javax.realtime.RealtimeThread 27
of javax.realtime.Schedulable 42

getSchedulingParameters()
of javax.realtime.AsyncEventHandler

190
of javax.realtime.RealtimeThread 27
of javax.realtime.Schedulable 42

getSecurityManager()
of javax.realtime.RealtimeSystem 211

getShort(long)
of javax.realtime.RawMemoryAccess

121
getShorts(long, short[], int, int)

of javax.realtime.RawMemoryAccess
122

getStart()
of javax.realtime.PeriodicParameters 59
of javax.realtime.ProcessingGroupParam-

eters 69
getTime()

of javax.realtime.Clock 167
getTime(AbsoluteTime)

of javax.realtime.Clock 167
getVMAttributes()

of javax.realtime.PhysicalMemoryType-
Filter 98

getVMFlags()
of javax.realtime.PhysicalMemoryType-

Filter 98

INDEX

270

H
handleAsyncEvent()

of javax.realtime.AsyncEventHandler
190

handledBy(AsyncEventHandler)
of javax.realtime.AsyncEvent 182

happened(boolean)
of javax.realtime.AsynchronouslyInter-

ruptedException 200
hashCode()

of javax.realtime.HighResolutionTime
150

HeapMemory
of javax.realtime 81

HighResolutionTime
of javax.realtime 148

I
IllegalAssignmentError

of javax.realtime 220
IllegalAssignmentError()

of javax.realtime.IllegalAssignmentError
220

IllegalAssignmentError(String)
of javax.realtime.IllegalAssignmentError

221
ImmortalMemory

of javax.realtime 82
ImmortalPhysicalMemory

of javax.realtime 100
ImmortalPhysicalMemory(Object, long)

of javax.realtime.ImmortalPhysicalMemo-
ry 100

ImmortalPhysicalMemory(Object, long,
long)

of javax.realtime.ImmortalPhysicalMemo-
ry 101

ImmortalPhysicalMemory(Object, long,
long, Runnable)

of javax.realtime.ImmortalPhysicalMemo-
ry 101

ImmortalPhysicalMemory(Object, long,
Runnable)

of javax.realtime.ImmortalPhysicalMemo-
ry 102

ImmortalPhysicalMemory(Object, long,

SizeEstimator)
of javax.realtime.ImmortalPhysicalMemo-

ry 103
ImmortalPhysicalMemory(Object, long,

SizeEstimator, Runnable)
of javax.realtime.ImmortalPhysicalMemo-

ry 104
ImmortalPhysicalMemory(Object, SizeEsti-

mator)
of javax.realtime.ImmortalPhysicalMemo-

ry 104
ImmortalPhysicalMemory(Object, SizeEsti-

mator, Runnable)
of javax.realtime.ImmortalPhysicalMemo-

ry 105
ImportanceParameters

of javax.realtime 52
ImportanceParameters(int, int)

of javax.realtime.ImportanceParameters
53

InaccessibleAreaException
of javax.realtime 214

InaccessibleAreaException()
of javax.realtime.InaccessibleAreaExcep-

tion 215
InaccessibleAreaException(String)

of javax.realtime.InaccessibleAreaExcep-
tion 215

initialize(long, long, long)
of javax.realtime.PhysicalMemoryType-

Filter 98
instance()

of javax.realtime.HeapMemory 81
of javax.realtime.ImmortalMemory 82
of javax.realtime.PriorityInheritance 139
of javax.realtime.PriorityScheduler 49

interrupt()
of javax.realtime.RealtimeThread 27

interruptAction(AsynchronouslyInterrupte-
dException)

of javax.realtime.Interruptible 197
Interruptible

of javax.realtime 197
isEmpty()

of javax.realtime.WaitFreeReadQueue
143

of javax.realtime.WaitFreeWriteQueue
140

INDEX

271

isEnabled()
of javax.realtime.AsynchronouslyInter-

ruptedException 200
isFeasible()

of javax.realtime.PriorityScheduler 49
of javax.realtime.Scheduler 46

isFull()
of javax.realtime.WaitFreeReadQueue

143
of javax.realtime.WaitFreeWriteQueue

140
isPresent(long, long)

of javax.realtime.PhysicalMemoryType-
Filter 99

isRemovable()
of javax.realtime.PhysicalMemoryType-

Filter 99
isRemovable(long, long)

of javax.realtime.PhysicalMemoryMan-
ager 96

isRemoved(long, long)
of javax.realtime.PhysicalMemoryMan-

ager 96
isRunning()

of javax.realtime.Timer 170

J
java.applet - package 223
join()

of javax.realtime.ScopedMemory 87
join(HighResolutionTime)

of javax.realtime.ScopedMemory 87
joinAndEnter()

of javax.realtime.ScopedMemory 88
joinAndEnter(HighResolutionTime)

of javax.realtime.ScopedMemory 88
joinAndEnter(Runnable)

of javax.realtime.ScopedMemory 89
joinAndEnter(Runnable, HighResolution-

Time)
of javax.realtime.ScopedMemory 89

L
LITTLE_ENDIAN

of javax.realtime.RealtimeSystem 210
LTMemory

of javax.realtime 92

LTMemory(long, long)
of javax.realtime.LTMemory 93

LTMemory(long, long, Runnable)
of javax.realtime.LTMemory 93

LTMemory(SizeEstimator, SizeEstimator)
of javax.realtime.LTMemory 94

LTMemory(SizeEstimator, SizeEstimator,
Runnable)

of javax.realtime.LTMemory 94
LTPhysicalMemory

of javax.realtime 106
LTPhysicalMemory(Object, long)

of javax.realtime.LTPhysicalMemory
106

LTPhysicalMemory(Object, long, long)
of javax.realtime.LTPhysicalMemory

107
LTPhysicalMemory(Object, long, long, Run-

nable)
of javax.realtime.LTPhysicalMemory

107
LTPhysicalMemory(Object, long, Runnable)

of javax.realtime.LTPhysicalMemory
108

LTPhysicalMemory(Object, long, SizeEsti-
mator)

of javax.realtime.LTPhysicalMemory
109

LTPhysicalMemory(Object, long, SizeEsti-
mator, Runnable)

of javax.realtime.LTPhysicalMemory
109

LTPhysicalMemory(Object, SizeEstimator)
of javax.realtime.LTPhysicalMemory

110
LTPhysicalMemory(Object, SizeEstimator,

Runnable)
of javax.realtime.LTPhysicalMemory

111

M
map()

of javax.realtime.RawMemoryAccess
122

map(long)
of javax.realtime.RawMemoryAccess

122

INDEX

272

map(long, long)
of javax.realtime.RawMemoryAccess

122
MAX_PRIORITY

of javax.realtime.PriorityScheduler 47
MemoryAccessError

of javax.realtime 221
MemoryAccessError()

of javax.realtime.MemoryAccessError
221

MemoryAccessError(String)
of javax.realtime.MemoryAccessError

221
MemoryArea

of javax.realtime 77
MemoryArea(long)

of javax.realtime.MemoryArea 77
MemoryArea(long, Runnable)

of javax.realtime.MemoryArea 77
MemoryArea(SizeEstimator)

of javax.realtime.MemoryArea 78
MemoryArea(SizeEstimator, Runnable)

of javax.realtime.MemoryArea 78
memoryConsumed()

of javax.realtime.HeapMemory 82
of javax.realtime.MemoryArea 79

MemoryInUseException
of javax.realtime 219

MemoryInUseException()
of javax.realtime.MemoryInUseExcep-

tion 219
MemoryInUseException(String)

of javax.realtime.MemoryInUseExcep-
tion 219

MemoryParameters
of javax.realtime 129

MemoryParameters(long, long)
of javax.realtime.MemoryParameters 130

MemoryParameters(long, long, long)
of javax.realtime.MemoryParameters 130

memoryRemaining()
of javax.realtime.HeapMemory 82
of javax.realtime.MemoryArea 80

MemoryScopeException
of javax.realtime 216

MemoryScopeException()
of javax.realtime.MemoryScopeException

216

MemoryScopeException(String)
of javax.realtime.MemoryScopeException

216
MemoryTypeConflictException

of javax.realtime 215
MemoryTypeConflictException()

of javax.realtime.MemoryTypeConflict-
Exception 215

MemoryTypeConflictException(String)
of javax.realtime.MemoryTypeConflict-

Exception 215
MIN_PRIORITY

of javax.realtime.PriorityScheduler 47
mitViolationExcept

of javax.realtime.SporadicParameters 63
MITViolationException

of javax.realtime 216
MITViolationException()

of javax.realtime.MITViolationException
216

MITViolationException(String)
of javax.realtime.MITViolationException

217
mitViolationIgnore

of javax.realtime.SporadicParameters 63
mitViolationReplace

of javax.realtime.SporadicParameters 63
mitViolationSave

of javax.realtime.SporadicParameters 63
MonitorControl

of javax.realtime 136
MonitorControl()

of javax.realtime.MonitorControl 137

N
newArray(Class, int)

of javax.realtime.MemoryArea 80
newInstance(Class)

of javax.realtime.MemoryArea 80
newInstance(Constructor, Object[])

of javax.realtime.MemoryArea 81
NO_MAX

of javax.realtime.MemoryParameters 129
NoHeapRealtimeThread

of javax.realtime 33
NoHeapRealtimeThread(SchedulingParam-

eters, MemoryArea)
of javax.realtime.NoHeapRealtimeThread

INDEX

273

34
NoHeapRealtimeThread(SchedulingParam-

eters, ReleaseParameters, Memor-
yArea)

of javax.realtime.NoHeapRealtimeThread
34

NoHeapRealtimeThread(SchedulingParam-
eters, ReleaseParameters, Memo-
ryParameters, MemoryArea,
ProcessingGroupParameters, Run-
nable)

of javax.realtime.NoHeapRealtimeThread
35

nonBlockingRead()
of javax.realtime.WaitFreeDequeue 145

nonBlockingWrite(Object)
of javax.realtime.WaitFreeDequeue 145

O
OffsetOutOfBoundsException

of javax.realtime 217
OffsetOutOfBoundsException()

of javax.realtime.OffsetOutOfBoundsEx-
ception 217

OffsetOutOfBoundsException(String)
of javax.realtime.OffsetOutOfBoundsEx-

ception 217
OneShotTimer

of javax.realtime 170
OneShotTimer(HighResolutionTime, Asyn-

cEventHandler)
of javax.realtime.OneShotTimer 171

OneShotTimer(HighResolutionTime, Clock,
AsyncEventHandler)

of javax.realtime.OneShotTimer 171
onInsertion(long, long, AsyncEventHandler)

of javax.realtime.PhysicalMemoryMan-
ager 96

of javax.realtime.PhysicalMemoryType-
Filter 99

onRemoval(long, long, AsyncEventHandler)
of javax.realtime.PhysicalMemoryMan-

ager 96
of javax.realtime.PhysicalMemoryType-

Filter 99

P
PeriodicParameters

of javax.realtime 57
PeriodicParameters(HighResolutionTime,

RelativeTime, RelativeTime, Rela-
tiveTime, AsyncEventHandler,
AsyncEventHandler)

of javax.realtime.PeriodicParameters 57
PeriodicTimer

of javax.realtime 171
PeriodicTimer(HighResolutionTime, Rela-

tiveTime, AsyncEventHandler)
of javax.realtime.PeriodicTimer 172

PeriodicTimer(HighResolutionTime, Rela-
tiveTime, Clock, Asyn-
cEventHandler)

of javax.realtime.PeriodicTimer 172
PhysicalMemoryManager

of javax.realtime 95
PhysicalMemoryTypeFilter

of javax.realtime 98
POSIXSignalHandler

of javax.realtime 204
POSIXSignalHandler()

of javax.realtime.POSIXSignalHandler
208

PriorityCeilingEmulation
of javax.realtime 138

PriorityCeilingEmulation(int)
of javax.realtime.PriorityCeilingEmula-

tion 138
PriorityInheritance

of javax.realtime 138
PriorityInheritance()

of javax.realtime.PriorityInheritance 139
PriorityParameters

of javax.realtime 51
PriorityParameters(int)

of javax.realtime.PriorityParameters 52
PriorityScheduler

of javax.realtime 47
PriorityScheduler()

of javax.realtime.PriorityScheduler 47
ProcessingGroupParameters

of javax.realtime 67
ProcessingGroupParameters(HighResolu-

tionTime, RelativeTime, Rela-
tiveTime, RelativeTime,

INDEX

274

AsyncEventHandler, Asyn-
cEventHandler)

of javax.realtime.ProcessingGroupParam-
eters 67

propagate()
of javax.realtime.AsynchronouslyInter-

ruptedException 200

R
RationalTime

of javax.realtime 160
RationalTime(int)

of javax.realtime.RationalTime 161
RationalTime(int, long, int)

of javax.realtime.RationalTime 161
RationalTime(int, RelativeTime)

of javax.realtime.RationalTime 161
RawMemoryAccess

of javax.realtime 117
RawMemoryAccess(Object, long)

of javax.realtime.RawMemoryAccess
118

RawMemoryAccess(Object, long, long)
of javax.realtime.RawMemoryAccess

119
RawMemoryFloatAccess

of javax.realtime 125
RawMemoryFloatAccess(Object, long)

of javax.realtime.RawMemoryFloatAc-
cess 125

RawMemoryFloatAccess(Object, long, long)
of javax.realtime.RawMemoryFloatAc-

cess 126
read()

of javax.realtime.WaitFreeReadQueue
143

of javax.realtime.WaitFreeWriteQueue
140

RealtimeSecurity
of javax.realtime 209

RealtimeSecurity()
of javax.realtime.RealtimeSecurity 209

RealtimeSystem
of javax.realtime 210

RealtimeSystem()
of javax.realtime.RealtimeSystem 210

RealtimeThread
of javax.realtime 23

RealtimeThread()
of javax.realtime.RealtimeThread 24

RealtimeThread(SchedulingParameters)
of javax.realtime.RealtimeThread 24

RealtimeThread(SchedulingParameters, Re-
leaseParameters)

of javax.realtime.RealtimeThread 24
RealtimeThread(SchedulingParameters, Re-

leaseParameters, MemoryParame-
ters, MemoryArea,
ProcessingGroupParameters, Run-
nable)

of javax.realtime.RealtimeThread 24
registerFilter(Object, PhysicalMemory-

TypeFilter)
of javax.realtime.PhysicalMemoryMan-

ager 97
relative(Clock)

of javax.realtime.AbsoluteTime 155
of javax.realtime.HighResolutionTime

150
of javax.realtime.RelativeTime 159

relative(Clock, AbsoluteTime)
of javax.realtime.AbsoluteTime 155

relative(Clock, HighResolutionTime)
of javax.realtime.HighResolutionTime

150
relative(Clock, RelativeTime)

of javax.realtime.RelativeTime 159
RelativeTime

of javax.realtime 156
RelativeTime()

of javax.realtime.RelativeTime 157
RelativeTime(long, int)

of javax.realtime.RelativeTime 157
RelativeTime(RelativeTime)

of javax.realtime.RelativeTime 157
ReleaseParameters

of javax.realtime 54
ReleaseParameters()

of javax.realtime.ReleaseParameters 54
ReleaseParameters(RelativeTime, Rela-

tiveTime, AsyncEventHandler,
AsyncEventHandler)

of javax.realtime.ReleaseParameters 54
removeFilter(Object)

of javax.realtime.PhysicalMemoryMan-
ager 97

INDEX

275

removeFromFeasibility()
of javax.realtime.AsyncEventHandler

190
of javax.realtime.RealtimeThread 27
of javax.realtime.Schedulable 42

removeFromFeasibility(Schedulable)
of javax.realtime.PriorityScheduler 50
of javax.realtime.Scheduler 46

removeHandler(AsyncEventHandler)
of javax.realtime.AsyncEvent 182

removeHandler(int, AsyncEventHandler)
of javax.realtime.POSIXSignalHandler

208
reschedule(HighResolutionTime)

of javax.realtime.Timer 170
reserve(Class, int)

of javax.realtime.SizeEstimator 83
reserve(SizeEstimator)

of javax.realtime.SizeEstimator 83
reserve(SizeEstimator, int)

of javax.realtime.SizeEstimator 83
resetTime(HighResolutionTime)

of javax.realtime.Timed 202
ResourceLimitError

of javax.realtime 221
ResourceLimitError()

of javax.realtime.ResourceLimitError
222

ResourceLimitError(String)
of javax.realtime.ResourceLimitError

222
run()

of javax.realtime.AsyncEventHandler
191

run(AsynchronouslyInterruptedException)
of javax.realtime.Interruptible 197

S
Schedulable

of javax.realtime 41
schedulePeriodic()

of javax.realtime.RealtimeThread 28
Scheduler

of javax.realtime 45
Scheduler()

of javax.realtime.Scheduler 45
SchedulingParameters

of javax.realtime 51

SchedulingParameters()
of javax.realtime.SchedulingParameters

51
ScopedCycleException

of javax.realtime 219
ScopedCycleException()

of javax.realtime.ScopedCycleException
220

ScopedCycleException(String)
of javax.realtime.ScopedCycleException

220
ScopedMemory

of javax.realtime 84
ScopedMemory(long)

of javax.realtime.ScopedMemory 85
ScopedMemory(long, Runnable)

of javax.realtime.ScopedMemory 85
ScopedMemory(SizeEstimator)

of javax.realtime.ScopedMemory 85
ScopedMemory(SizeEstimator, Runnable)

of javax.realtime.ScopedMemory 86
set(Date)

of javax.realtime.AbsoluteTime 155
set(HighResolutionTime)

of javax.realtime.HighResolutionTime
151

set(long)
of javax.realtime.HighResolutionTime

151
set(long, int)

of javax.realtime.HighResolutionTime
151

of javax.realtime.RationalTime 163
setAllocationRate(long)

of javax.realtime.MemoryParameters 131
setAllocationRateIfFeasible(int)

of javax.realtime.MemoryParameters 131
setArrivalTimeQueueOverflowBehav-

ior(String)
of javax.realtime.SporadicParameters 65

setByte(long, byte)
of javax.realtime.RawMemoryAccess

123
setBytes(long, byte[], int, int)

of javax.realtime.RawMemoryAccess
123

setCost(RelativeTime)
of javax.realtime.ProcessingGroupParam-

eters 69

INDEX

276

of javax.realtime.ReleaseParameters 55
setCostOverrunHandler(Asyn-

cEventHandler)
of javax.realtime.ProcessingGroupParam-

eters 69
of javax.realtime.ReleaseParameters 56

setDeadline(RelativeTime)
of javax.realtime.ProcessingGroupParam-

eters 69
of javax.realtime.ReleaseParameters 56

setDeadlineMissHandler(Asyn-
cEventHandler)

of javax.realtime.ProcessingGroupParam-
eters 69

of javax.realtime.ReleaseParameters 56
setDefaultScheduler(Scheduler)

of javax.realtime.Scheduler 46
setDouble(long, double)

of javax.realtime.RawMemoryFloatAc-
cess 128

setDoubles(long, double[], int, int)
of javax.realtime.RawMemoryFloatAc-

cess 128
setFloat(long, float)

of javax.realtime.RawMemoryFloatAc-
cess 128

setFloats(long, float[], int, int)
of javax.realtime.RawMemoryFloatAc-

cess 129
setFrequency(int)

of javax.realtime.RationalTime 163
setHandler(AsyncEventHandler)

of javax.realtime.AsyncEvent 182
setHandler(int, AsyncEventHandler)

of javax.realtime.POSIXSignalHandler
208

setIfFeasible(RelativeTime, RelativeTime)
of javax.realtime.AperiodicParameters 61
of javax.realtime.ReleaseParameters 57

setIfFeasible(RelativeTime, RelativeTime,
RelativeTime)

of javax.realtime.PeriodicParameters 59
of javax.realtime.ProcessingGroupParam-

eters 70
of javax.realtime.SporadicParameters 66

setIfFeasible(ReleaseParameters, Memory-
Parameters)

of javax.realtime.AsyncEventHandler
191

of javax.realtime.RealtimeThread 28
setIfFeasible(ReleaseParameters, Memory-

Parameters, ProcessingGroupPa-
rameters)

of javax.realtime.AsyncEventHandler
191

of javax.realtime.RealtimeThread 28
setIfFeasible(ReleaseParameters, Process-

ingGroupParameters)
of javax.realtime.AsyncEventHandler

191
of javax.realtime.RealtimeThread 28

setIfFeasible(Schedulable, ReleaseParame-
ters, MemoryParameters)

of javax.realtime.PriorityScheduler 50
of javax.realtime.Scheduler 47

setIfFeasible(Schedulable, ReleaseParame-
ters, MemoryParameters, Process-
ingGroupParameters)

of javax.realtime.PriorityScheduler 50
of javax.realtime.Scheduler 47

setImportance(int)
of javax.realtime.ImportanceParameters

53
setInitialArrivalTimeQueueLength(int)

of javax.realtime.SporadicParameters 66
setInt(long, int)

of javax.realtime.RawMemoryAccess
123

setInterval(RelativeTime)
of javax.realtime.PeriodicTimer 173

setInts(long, int[], int, int)
of javax.realtime.RawMemoryAccess

123
setLong(long, long)

of javax.realtime.RawMemoryAccess
124

setLongs(long, long[], int, int)
of javax.realtime.RawMemoryAccess

124
setMaxImmortalIfFeasible(long)

of javax.realtime.MemoryParameters 131
setMaximumConcurrentLocks(int)

of javax.realtime.RealtimeSystem 211
setMaximumConcurrentLocks(int, boolean)

of javax.realtime.RealtimeSystem 212
setMaxMemoryAreaIfFeasible(long)

of javax.realtime.MemoryParameters 132
setMemoryParameters(MemoryParame-

INDEX

277

ters)
of javax.realtime.AsyncEventHandler

191
of javax.realtime.RealtimeThread 29
of javax.realtime.Schedulable 42

setMemoryParametersIfFeasible(Memory-
Parameters)

of javax.realtime.AsyncEventHandler
192

of javax.realtime.RealtimeThread 29
of javax.realtime.Schedulable 43

setMinimumInterarrival(RelativeTime)
of javax.realtime.SporadicParameters 66

setMitViolationBehavior(String)
of javax.realtime.SporadicParameters 66

setMonitorControl(MonitorControl)
of javax.realtime.MonitorControl 137

setMonitorControl(Object, MonitorControl)
of javax.realtime.MonitorControl 137

setPeriod(RelativeTime)
of javax.realtime.PeriodicParameters 59
of javax.realtime.ProcessingGroupParam-

eters 70
setPortal(Object)

of javax.realtime.ScopedMemory 90
setPriority(int)

of javax.realtime.PriorityParameters 52
setProcessingGroupParameters(Processing-

GroupParameters)
of javax.realtime.AsyncEventHandler

192
of javax.realtime.RealtimeThread 29
of javax.realtime.Schedulable 43

setProcessingGroupParametersIfFeasi-
ble(ProcessingGroupParameters)

of javax.realtime.AsyncEventHandler
192

of javax.realtime.RealtimeThread 29
of javax.realtime.Schedulable 43

setReleaseParameters(ReleaseParameters)
of javax.realtime.AsyncEventHandler

192
of javax.realtime.RealtimeThread 30
of javax.realtime.Schedulable 43

setReleaseParametersIfFeasible(ReleasePa-
rameters)

of javax.realtime.AsyncEventHandler
193

of javax.realtime.RealtimeThread 30

of javax.realtime.Schedulable 43
setResolution(RelativeTime)

of javax.realtime.Clock 168
setScheduler(Scheduler)

of javax.realtime.AsyncEventHandler
193

of javax.realtime.RealtimeThread 30
of javax.realtime.Schedulable 44

setScheduler(Scheduler, SchedulingParame-
ters, ReleaseParameters, Memory-
Parameters,
ProcessingGroupParameters)

of javax.realtime.AsyncEventHandler
193

of javax.realtime.RealtimeThread 31
of javax.realtime.Schedulable 44

setSchedulingParameters(SchedulingPa-
rameters)

of javax.realtime.AsyncEventHandler
194

of javax.realtime.RealtimeThread 31
of javax.realtime.Schedulable 44

setSchedulingParametersIfFeasible(Sched-
ulingParameters)

of javax.realtime.AsyncEventHandler
195

of javax.realtime.RealtimeThread 32
of javax.realtime.Schedulable 44

setSecurityManager(RealtimeSecurity)
of javax.realtime.RealtimeSystem 212

setShort(long, short)
of javax.realtime.RawMemoryAccess

124
setShorts(long, short[], int, int)

of javax.realtime.RawMemoryAccess
125

setStart(HighResolutionTime)
of javax.realtime.PeriodicParameters 59
of javax.realtime.ProcessingGroupParam-

eters 70
SHARED

of javax.realtime.PhysicalMemoryMan-
ager 95

SIGABRT
of javax.realtime.POSIXSignalHandler

204
SIGALRM

of javax.realtime.POSIXSignalHandler
204

INDEX

278

SIGBUS
of javax.realtime.POSIXSignalHandler

204
SIGCANCEL

of javax.realtime.POSIXSignalHandler
204

SIGCHLD
of javax.realtime.POSIXSignalHandler

204
SIGCLD

of javax.realtime.POSIXSignalHandler
205

SIGCONT
of javax.realtime.POSIXSignalHandler

205
SIGEMT

of javax.realtime.POSIXSignalHandler
205

SIGFPE
of javax.realtime.POSIXSignalHandler

205
SIGFREEZE

of javax.realtime.POSIXSignalHandler
205

SIGHUP
of javax.realtime.POSIXSignalHandler

205
SIGILL

of javax.realtime.POSIXSignalHandler
205

SIGINT
of javax.realtime.POSIXSignalHandler

205
SIGIO

of javax.realtime.POSIXSignalHandler
205

SIGIOT
of javax.realtime.POSIXSignalHandler

205
SIGKILL

of javax.realtime.POSIXSignalHandler
205

SIGLOST
of javax.realtime.POSIXSignalHandler

206
SIGLWP

of javax.realtime.POSIXSignalHandler
206

SIGPIPE
of javax.realtime.POSIXSignalHandler

206
SIGPOLL

of javax.realtime.POSIXSignalHandler
206

SIGPROF
of javax.realtime.POSIXSignalHandler

206
SIGPWR

of javax.realtime.POSIXSignalHandler
206

SIGQUIT
of javax.realtime.POSIXSignalHandler

206
SIGSEGV

of javax.realtime.POSIXSignalHandler
206

SIGSTOP
of javax.realtime.POSIXSignalHandler

206
SIGSYS

of javax.realtime.POSIXSignalHandler
206

SIGTERM
of javax.realtime.POSIXSignalHandler

206
SIGTHAW

of javax.realtime.POSIXSignalHandler
206

SIGTRAP
of javax.realtime.POSIXSignalHandler

207
SIGTSTP

of javax.realtime.POSIXSignalHandler
207

SIGTTIN
of javax.realtime.POSIXSignalHandler

207
SIGTTOU

of javax.realtime.POSIXSignalHandler
207

SIGURG
of javax.realtime.POSIXSignalHandler

207
SIGUSR1

of javax.realtime.POSIXSignalHandler
207

INDEX

279

SIGUSR2
of javax.realtime.POSIXSignalHandler

207
SIGVTALRM

of javax.realtime.POSIXSignalHandler
207

SIGWAITING
of javax.realtime.POSIXSignalHandler

207
SIGWINCH

of javax.realtime.POSIXSignalHandler
207

SIGXCPU
of javax.realtime.POSIXSignalHandler

207
SIGXFSZ

of javax.realtime.POSIXSignalHandler
208

size()
of javax.realtime.MemoryArea 81
of javax.realtime.WaitFreeReadQueue

143
of javax.realtime.WaitFreeWriteQueue

141
SizeEstimator

of javax.realtime 82
SizeEstimator()

of javax.realtime.SizeEstimator 83
SizeOutOfBoundsException

of javax.realtime 217
SizeOutOfBoundsException()

of javax.realtime.SizeOutOfBoundsEx-
ception 218

SizeOutOfBoundsException(String)
of javax.realtime.SizeOutOfBoundsEx-

ception 218
sleep(Clock, HighResolutionTime)

of javax.realtime.RealtimeThread 32
sleep(HighResolutionTime)

of javax.realtime.RealtimeThread 32
SporadicParameters

of javax.realtime 61
SporadicParameters(RelativeTime, Rela-

tiveTime, RelativeTime, Asyn-
cEventHandler,
AsyncEventHandler)

of javax.realtime.SporadicParameters 63
start()

of javax.realtime.NoHeapRealtimeThread

36
of javax.realtime.RealtimeThread 32
of javax.realtime.Timer 170

stop()
of javax.realtime.Timer 170

subtract(AbsoluteTime)
of javax.realtime.AbsoluteTime 155

subtract(AbsoluteTime, RelativeTime)
of javax.realtime.AbsoluteTime 155

subtract(RelativeTime)
of javax.realtime.AbsoluteTime 156
of javax.realtime.RelativeTime 160

subtract(RelativeTime, AbsoluteTime)
of javax.realtime.AbsoluteTime 156

subtract(RelativeTime, RelativeTime)
of javax.realtime.RelativeTime 160

T
ThrowBoundaryError

of javax.realtime 222
ThrowBoundaryError()

of javax.realtime.ThrowBoundaryError
222

ThrowBoundaryError(String)
of javax.realtime.ThrowBoundaryError

222
Timed

of javax.realtime 201
Timed(HighResolutionTime)

of javax.realtime.Timed 201
Timer

of javax.realtime 168
Timer(HighResolutionTime, Clock, Asyn-

cEventHandler)
of javax.realtime.Timer 168

toString()
of javax.realtime.AbsoluteTime 156
of javax.realtime.ImportanceParameters

53
of javax.realtime.LTMemory 94
of javax.realtime.LTPhysicalMemory

111
of javax.realtime.PriorityParameters 52
of javax.realtime.RelativeTime 160
of javax.realtime.ScopedMemory 90
of javax.realtime.VTMemory 92
of javax.realtime.VTPhysicalMemory

117

INDEX

280

U
unbindTo(String)

of javax.realtime.AsyncEvent 183
UnknownHappeningException

of javax.realtime 220
UnknownHappeningException()

of javax.realtime.UnknownHappeningEx-
ception 220

UnknownHappeningException(String)
of javax.realtime.UnknownHappeningEx-

ception 220
unmap()

of javax.realtime.RawMemoryAccess
125

UnsupportedPhysicalMemoryException
of javax.realtime 218

UnsupportedPhysicalMemoryException()
of javax.realtime.UnsupportedPhysi-

calMemoryException 218
UnsupportedPhysicalMemoryExcep-

tion(String)
of javax.realtime.UnsupportedPhysi-

calMemoryException 218

V
vFind(long, long)

of javax.realtime.PhysicalMemoryType-
Filter 100

VTMemory
of javax.realtime 90

VTMemory(long, long)
of javax.realtime.VTMemory 91

VTMemory(long, long, Runnable)
of javax.realtime.VTMemory 91

VTMemory(SizeEstimator, SizeEstimator)
of javax.realtime.VTMemory 91

VTMemory(SizeEstimator, SizeEstimator,
Runnable)

of javax.realtime.VTMemory 91
VTPhysicalMemory

of javax.realtime 112
VTPhysicalMemory(Object, long)

of javax.realtime.VTPhysicalMemory
112

VTPhysicalMemory(Object, long, long)
of javax.realtime.VTPhysicalMemory

112

VTPhysicalMemory(Object, long, long, Run-
nable)

of javax.realtime.VTPhysicalMemory
113

VTPhysicalMemory(Object, long, Runna-
ble)

of javax.realtime.VTPhysicalMemory
114

VTPhysicalMemory(Object, long, SizeEsti-
mator)

of javax.realtime.VTPhysicalMemory
115

VTPhysicalMemory(Object, long, SizeEsti-
mator, Runnable)

of javax.realtime.VTPhysicalMemory
115

VTPhysicalMemory(Object, SizeEstimator)
of javax.realtime.VTPhysicalMemory

116
VTPhysicalMemory(Object, SizeEstimator,

Runnable)
of javax.realtime.VTPhysicalMemory

117

W
waitForData()

of javax.realtime.WaitFreeReadQueue
143

waitForNextPeriod()
of javax.realtime.RealtimeThread 33

waitForObject(Object, HighResolution-
Time)

of javax.realtime.HighResolutionTime
151

WaitFreeDequeue
of javax.realtime 144

WaitFreeDequeue(Thread, Thread, int,
MemoryArea)

of javax.realtime.WaitFreeDequeue 144
WaitFreeReadQueue

of javax.realtime 141
WaitFreeReadQueue(Thread, Thread, int,

MemoryArea)
of javax.realtime.WaitFreeReadQueue

141
WaitFreeReadQueue(Thread, Thread, int,

MemoryArea, boolean)
of javax.realtime.WaitFreeReadQueue

INDEX

281

142
WaitFreeWriteQueue

of javax.realtime 139
WaitFreeWriteQueue(Thread, Thread, int,

MemoryArea)
of javax.realtime.WaitFreeWriteQueue

139
write(Object)

of javax.realtime.WaitFreeReadQueue
143

of javax.realtime.WaitFreeWriteQueue
141

INDEX

282

