
Kelvin Nilsen 1

....................

...
...

...
...

...
..

Doing Real-Time With Java

Kelvin Nilsen, Chair of the Real-Time Java Working
Group

Copyright (c) 2001 J Consortium, Inc. All Rights Reserved

JavaTM is a trademark of Sun Microsystems in the U.S. and other
countries.

Kelvin Nilsen 2

... ..
Why Real-Time Java is relevant?

n Java is replacing C, C++, Pascal as the preferred
undergraduate instructional language.

n Real-Time Java threatens to displace Ada as the
preferred Defense Department language.

n Real-Time Java offers the potential of improving the state
of the art for integration of real-time software
components.

n Different approaches are appropriate for different needs
(small devices vs. large systems).

n Near-term commercial requirements are for “que será,
será” soft real time.

Kelvin Nilsen 3

... ..
History

n 1988: dissertation on high-level real-time
programming language features, including real-
time garbage collection

n 1988-1996: additional research on real-time
garbage collection, culminating in attempts to
commercialize for C++

n May 1995: Sun released Java
n Dec 95: “Issues in the Design and

Implementation of Real-Time Java”, followed by
a draft specification to address the issues

Kelvin Nilsen 4

... ..
History

n March 96: Nilsen founded NewMonics, to focus
on commercialization of real-time Java
technologies

n Summer 96: RTOS companies (Microware, Wind
River) licensed Java from Sun

n Fall 97: NIST workshop on Java conformity
assessment. Nilsen represented “Real Time”

n June - Dec 98: NIST series of Real-Time Java
workshops (involving 37 companies)

Kelvin Nilsen 5

... ..
History

n Nov 98: RTJWG formed to create specification

n Feb 99: Sun formed RT Expert Group to work
on RTSJ

n Oct 00: J Consortium (sponsor of RTJWG)
approved as ISO PAS submitter

Kelvin Nilsen 6

... ..
NIST Requirements

n Goal 1: “RTJ should allow any desired
degree of real-time resource management
for the purpose of the system operating in
real-time to any desired degree (e.g., hard
real-time, and soft real-time with any time
constraints, collective timeliness
optimization criteria, and
optimality/predictability tradeoffs).”

Kelvin Nilsen 7

... ..
NIST Goals

n Goal 2: “Support for RTJ specification
should be possible on any implementation
of the complete Java programming
language.”

Kelvin Nilsen 8

... ..
Derived Requirements: Goal 2

n DR 2.1: “RTJ programming techniques should
scale to large or small-memory systems, to fast
or slow computers, to single CPU architectures
and to SMP machines.”

n DR 2.2: “RTJ should support the creation of both
small, simple systems and large, complex
systems (possibly using different profiles).”

n DR 2.3: “Standard subset of RTJ and RTJVM
specifications should be created as necessary to
support improved efficiency and/or reliability for
particular specialized domains.”

Kelvin Nilsen 9

... ..
NIST Goals

n Goal 3: “Subject to resource availability
and performance characteristics, it should
be possible to write RTJ programs and
components that are fully portable
regardless of the underlying platform.”

Kelvin Nilsen 10

... ..
Derived Requirements: Goal 3

n DR 3.1: “Minimal human intervention should be required
when the software is ‘ported’ to new hardware platforms or
combined with new software components.”

n DR 3.2: “RTJ should abstract operating system and
hardware dependencies.”

n DR 3.3: “RTJ must support standard Java semantics.”
n DR 3.4: “The RTJ technologies should maximize the use of

non-RTJ technologies (e.g. development tools and
libraries).”

n DR 3.5: “The RTJ API must be well-defined with guarantees
on all language features.”

Kelvin Nilsen 11

... ..
NIST Goals

n Goal 4: “RTJ should support workloads
comprised of the combination of real-time
tasks and non-real-time tasks.”

n Goal 5: “RTJ should allow real-time
application developers to separate
concerns between negotiating
components.”

Kelvin Nilsen 12

... ..
NIST Goals

n Goal 6: “RTJ should allow real-time
application developers to automate
resource requirements analysis either at
run-time or off-line.”

n Goal 7: “RTJ should allow real-time
application developers to write real-time
constraints into their software.”

Kelvin Nilsen 13

... ..
Derived Requirements: Goal 7

n DR 7.1: “RTJ should provide application
developers with the option of using conservative
or aggressive resource allocation.” [no
consensus]

n DR 7.2: “The same RTJVM should support
combined workloads in which some activities
budget aggressively and others conservatively.”

n DR 7.3: “RTJ infrastructure should allow
negotiating components to take responsibility for
assessing and managing risks associated with
resource budgeting and contention.”

Kelvin Nilsen 14

... ..
Derived Requirements: Goal 7

n DR 7.4: “RTJ should allow application developers to
specify real-time requirements without
understanding ‘global concerns’. For example, a
negotiating component should speak in terms of
deadlines and periods rather than priorities.”

n DR 7.5: “RTJ must provide a mechanism to
discover the relationship between available
priorities for Java threads and the set of all priorities
available in the system. In addition, a mechanism
must be provided to allow the relationships between
Java priorities and system priorities to be
determined.”

Kelvin Nilsen 15

... ..
NIST Goals

n Goal 8: “RTJ should allow resource
reservations and should enforce resource
budgets. The following resources should
be budgeted: CPU time, memory, and
memory allocation rate.”

Kelvin Nilsen 16

... ..
Derived Requirements: Goal 8

n DR 8.1: RTJ must:
– At least support strict priority-based

scheduling, queuing, and lock contention. This
support should apply to existing language
features as well.

– At least support some kind of priority ‘boosting’
(either priority inheritance or priority ceilings).
This support should apply to existing language
features as well.

– Support dynamic priority changes.

Kelvin Nilsen 17

... ..
Derived Requirements: Goal 8

n DR 8.1 (continued):
– Support the ability to propagate a local priority and

changes to remote servers – not just in support of RMI
but also in support of user-written communication
mechanisms.

– Support the ability to defer asynchronous suspension
or disruption when manipulating a data structure.

– Support the ability to build deadline-based scheduler
on top.

– Support the ability to query to find out the underlying
resource availability (non-Java) and handle
asynchronous changes to it.”

Kelvin Nilsen 18

... ..
Derived Requirements: Goal 8

n DR 8.2: “Language and libraries must be clearly
understood in terms of memory usage.”

n DR 8.3: “RTJ shall provide support for a
guaranteed allocation rate.”

n DR 8.4: “RTJ must not require bounds on when
an object is finalized or reclaimed.”

n DR 8.5: “RTJ should provide for specifying
memory.”

n DR 8.6: “The priority mechanism must take into
consideration the existing security protocols
related to setting priorities to high levels.”

Kelvin Nilsen 19

... ..
NIST Goals

n Goal 9: “RTJ should support the use of
components as ‘black boxes’; including
such use on the same thread.” [no
consensus]

Kelvin Nilsen 20

... ..
Derived Requirements: Goal 9

n DR 9.1: “RTJ should support dynamic loading
and integration of negotiating components.”

n DR 9.2: “RTJ should support a mechanism for
negotiating components whereby the
behavior of critical sections of code is locally
analyzable.”

Kelvin Nilsen 21

... ..
Derived Requirements: Goal 9

n DR 9.3: “RTJ should support the ability to
enforce (with notification, event handling
and accounting) space/time limits, in a
scoped manner, from the outside (on
‘standard’ Java features as well).

n DR 9.4: “In a real-time context, existing
Java features should ‘work right’, including
synchronized (bounded priority inversion)
and wait/notify (priority queuing).”

Kelvin Nilsen 22

... ..
NIST Goals

n Goal 10: “RTJ must provide real-time
garbage collection when garbage collection
is necessary. GC implementation
information must be visible to the RTJ
application.”
– RTGC has bounded system pause time,

guaranteed rate of memory reclamation, and
bounded allocation time

Kelvin Nilsen 23

... ..
Derived Requirements: Goal 10

n DR 10.1: “RTJ defines ‘garbage’.”
n DR 10.2: “RTJ should provide ‘hint

handling’ information regarding the GC
(e.g., accurate vs. conservative?
Defragmenting?)” [no consensus]

n DR 1.03: “RTJ must not restrict nor specify
the garbage collection technique; rather, it
should be capable of supporting all
appropriate techniques for real-time GC.”

Kelvin Nilsen 24

... ..
Derived Requirements: Goal 10

n DR 10.5: “The GC must make forward
progress at some rate. The rate must be
‘queryable’ and configurable.”

n DR 10.6: “Within RTJ, the GC overhead, if
any, on the application must be quantified.”

Kelvin Nilsen 25

... ..
NIST Goals

n Goal 11: “RTJ should support straightforward and
reliable integration of independently developed
software components (including changing
hardware).”

n Goal 12: “RTJ should be specified in sufficient
detail to support (and with particular
consideration for) targeting other languages,
such as Ada.

n Goal 13: “RTJ should be implementable on
operating systems that support real-time
behavior.”

Kelvin Nilsen 26

... ..
Alternative RTJ Approaches

n JNI Programming (as defined by Sun Java
specification)

n Real-Time Specification for Java (by Sun’s Java
Community Process)

n Real-Time Core (by J Consortium)
n High-Level Profile of the Real-Time Core (by J

Consortium)
n Real-Time Virtual Machine (by independent

clean-room vendors)

Kelvin Nilsen 27

... ..
Currently Available Approaches

n JNI Programming (as defined by Sun Java
specification)

n Real-Time Specification for Java (by Sun’s Java
Community Process)

n Real-Time Core (by J Consortium)
n High-Level Profile of the Real-Time Core (by J

Consortium)
n Real-Time Virtual Machine (by independent

clean-room vendors)

Kelvin Nilsen 28

... ..
Which is “Easiest” to Use?

n Point and Shoot
– Auto-everything

n SLR
– Manual or auto focus,

manual or auto exposure
– Interchangeable lenses

n View Camera
– Manual focus and exposure
– Interchangeable lenses
– Leaf shutters
– Tilts, shifts, swings
– Monstrous negatives

Kelvin Nilsen 29

... ..
Use the Right Tool for the Job

n Don’t expect:
– Ansel Adams to find it “easy” to work with an SLR or

point-and-shoot camera
– A photo-journalist to work with a point-and-shoot or

view camera
– A snapshot enthusiast to “enjoy” an SLR

n Why do we expect software engineering
professionals to be less competent than today’s
professional photographers?
– Do we really think a single tool (i.e. “language”) is best

for every application?

Kelvin Nilsen 30

... ..
Photography Infrastructure

n Note that cameras share:
– Same film and print paper technologies

– Same processing chemistry

– Same enlarge and reprint equipment
– Same exposure control (shutter speed and

aperture)

– Same principles of operation: focus, depth of
field, lens design, light metering, studio lighting

Kelvin Nilsen 31

... ..
Criteria for Comparisons

n Efficiency
n Predictability
n Latency
n Reliability
n Standardization
n Ease of Development
n Expressive Power
n Portability
n Scalability and Ease of Integration

Kelvin Nilsen 32

... ..
Efficiency

2Efficiency

RTVMCore
Profile

CoreRTSJJNI

JNI is generally much less efficient than solving the whole
problem in Java, and is 3-4 times less efficient than C. – Jack
Andrews of Space-Time Research

Kelvin Nilsen 33

... ..
Efficiency

22Efficiency

RTVMCore
Profile

CoreRTSJJNI

RTSJ has a smaller, more specialized audience than “desktop
Java”, and requires extra run-time checks each time an object field
is read or written.

Kelvin Nilsen 34

... ..
Efficiency

3322Efficiency

RTVMCore
Profile

CoreRTSJJNI

RTVM and Core Profile are essentially desktop Java with real-
time garbage collection. Making garbage collection real-time
incremental imposes run-time penalties compared with desktop
Java.

Kelvin Nilsen 35

... ..
Efficiency

33422Efficiency

RTVMCore
Profile

CoreRTSJJNI

Core features (e.g. no garbage collection, no dynamic
initialization/resolution, stack allocation) were designed to
achieve efficiency comparable to C++, running faster and smaller
than desktop Java.

Kelvin Nilsen 36

... ..
Predictability

33Predictability

RTVMCore
Profile

CoreRTSJJNI

With both JNI and RTSJ, predictability is entirely a quality of
implementation issue. Application code is predictable to the
extent that the VM and underlying operating system are
predictable.

Kelvin Nilsen 37

... ..
Predictability

44433Predictability

RTVMCore
Profile

CoreRTSJJNI

With Core, Core Profile, and RTVM, predictability is part of the
specified behavior. RTVM specifies fixed priorities, no priority
aging, and priority inheritance. Latencies are implementation-
defined (depends on platform). Conformance assessment requires
certain predictability guarantees.

Kelvin Nilsen 38

... ..
Latency

444Latency

RTVMCore
Profile

CoreRTSJJNI

JNI, RTSJ, and Core are all designed to provide the “best
possible” latency available on a given platform (hardware and
operating system combination). Expect context switch latencies
of less than 10 microseconds on typical state-of-the-art systems.

Kelvin Nilsen 39

... ..
Latency

33444Latency

RTVMCore
Profile

CoreRTSJJNI

Core Profile and RTVM have slightly worse latencies, because
time is required to preempt real-time garbage collection activities,
and because task scheduling decisions are slightly more
complicated than with JNI, RTSJ, and Core. Expect latencies of
100-200 microseconds on state-of-the-art platforms.

Kelvin Nilsen 40

... ..
Reliability

1Reliability

RTVMCore
Profile

CoreRTSJJNI

JNI has all the reliability weaknesses of C, which are amplified by
the complexity of the JNI object sharing protocols. It is far too
easy for programmers to make mistakes, and the consequences of
their mistakes are far reaching.

Kelvin Nilsen 41

... ..
Reliability

221Reliability

RTVMCore
Profile

CoreRTSJJNI

Stylized Java is much less error prone than C and/or assembly
language, because RTSJ and Core build on the strong type system
of Java. Also, these technologies provide better memory
management protection than C through run-time checks (RTSJ) or
static checks (Core). However, the level of detail required of
programmers and the impact of mistakes make these less reliable
than desktop Java.

Kelvin Nilsen 42

... ..
Reliability

3221Reliability

RTVMCore
Profile

CoreRTSJJNI

RTVM offers reliability comparable to desktop Java
implementations in that it provides automatic garbage collection,
secure dynamic loading (enforcement of type system), and
security management capabilities. RTVM programmers are
prevented from crashing the operating system, for example.

Kelvin Nilsen 43

... ..
Reliability

34221Reliability

RTVMCore
Profile

CoreRTSJJNI

Core Profile offers additional reliability benefits, such as
partitioning of memory and CPU time between particular
components.

Kelvin Nilsen 44

... ..
Standardization

333Standardization

RTVMCore
Profile

CoreRTSJJNI

JNI, RTSJ, and RTVM all adhere to “de facto standards” defined
by Sun Microsystems and “widely adopted” across many
industries. Specifications are published, but ambiguous and/or
incomplete. Compatibility testing is provided by Sun
Microsystems under special license terms and by independent
third parties (e.g. Plum Hall, Perennial).

Kelvin Nilsen 45

... ..
Standardization

34433Standardization

RTVMCore
Profile

CoreRTSJJNI

Core and Core Profile are defined by the J Consortium, and
(presumably) approved by ISO as international standards. The
specifications are more thorough, and ambiguities are resolved
through open, consensus-based procedures.

Kelvin Nilsen 46

... ..
Ease of development

1Ease of
development

RTVMCore
Profile

CoreRTSJJNI

JNI is particularly difficult to develop with. Programmers face all
of the challenges of traditional C or C++, combined with the
complexity of using the very low-level and error-prone JNI
protocols.

Kelvin Nilsen 47

... ..
Ease of development

221Ease of
development

RTVMCore
Profile

CoreRTSJJNI

RTSJ and Core are easier than JNI, because all development is
done in the same language (Java), which has a strong type system.
But the protocols required of these programmers are fairly low
level and detail oriented, making development more difficult than
desktop Java development.

Kelvin Nilsen 48

... ..
Ease of development

3221Ease of
development

RTVMCore
Profile

CoreRTSJJNI

RTVM offers the same ease of development as traditional desktop
Java, including real-time garbage collection. Developers report
approximately two-fold productivity improvement over C++.

Kelvin Nilsen 49

... ..
Ease of development

34221Ease of
development

RTVMCore
Profile

CoreRTSJJNI

With alternative approaches, every developer of a real-time
component must “worry” about what every other real-time
component is doing with memory, CPU time, and resource
locking. Core Profile builds upon the strengths of RTVM, adding
the capability to encapsulate resource requirements within
software components.

Kelvin Nilsen 50

... ..
Expressive Power

2Expressive power

RTVMCore
Profile

CoreRTSJJNI

JNI provides no way to describe timeouts, deadlines, periods of
execution, partitioning of memory or CPU time, etc. The
semantics of task priorities and synchronization are not specified.

Kelvin Nilsen 51

... ..
Expressive Power

32Expressive power

RTVMCore
Profile

CoreRTSJJNI

RTVM allows programmers to speak of “deterministic” priorities
and to define synchronized blocks which implement priority
inheritance.

Kelvin Nilsen 52

... ..
Expressive Power

3442Expressive power

RTVMCore
Profile

CoreRTSJJNI

RTSJ and Core add support for asynchronous transfer of control,
timeouts, priority ceiling protocol, and increased numbers of
thread priorities.

Kelvin Nilsen 53

... ..
Expressive Power

35442Expressive power

RTVMCore
Profile

CoreRTSJJNI

Core Profile adds deadline-driven and benefit-based scheduling,
memory and CPU time partitioning, and workload balancing.

Kelvin Nilsen 54

... ..
Portability

2Portability

RTVMCore
Profile

CoreRTSJJNI

JNI is no more portable than the C language and RTOS services
upon which it depends.

Kelvin Nilsen 55

... ..
Portability

32Portability

RTVMCore
Profile

CoreRTSJJNI

RTSJ benefits from the portability benefits of the Java language,
but exhibits RTOS and VM dependencies.

Kelvin Nilsen 56

... ..
Portability

44432Portability

RTVMCore
Profile

CoreRTSJJNI

Core, Core Profile, and RTVM provide consistent behavior across
CPU and operating system platforms.

Kelvin Nilsen 57

... ..
Scalability and
Ease of Integration

1Scalability and
ease of integration

RTVMCore
Profile

CoreRTSJJNI

Integrating JNI components is difficult because programmers
must avoid C global variable name conflicts, manually isolate
variables and services to restricted scopes, prevent resource
sharing conflicts, and deal with operating system
incompatibilities.

Kelvin Nilsen 58

... ..
Scalability and
Ease of Integration

21Scalability and
ease of integration

RTVMCore
Profile

CoreRTSJJNI

RTSJ prevents global naming conflicts, and uses Java’s strong
type system to limit the visibility of private variables and services.

Kelvin Nilsen 59

... ..
Scalability and
Ease of Integration

321Scalability and
ease of integration

RTVMCore
Profile

CoreRTSJJNI

RTVM builds upon the benefits of RTSJ by eliminating operating
system dependencies.

Kelvin Nilsen 60

... ..
Scalability and
Ease of Integration

3421Scalability and
ease of integration

RTVMCore
Profile

CoreRTSJJNI

Core enables watchdog tasks to monitor tasks and abort those that
are misbehaving, in addition to the benefits of RTVM.

Kelvin Nilsen 61

... ..
Scalability and
Ease of Integration

35421Scalability and
ease of integration

RTVMCore
Profile

CoreRTSJJNI

Core Profile adds services to support partitioning of memory and
CPU time between components, and to limit the time that tasks
can place exclusive locks on shared resources.

Kelvin Nilsen 62

... ..
Tabular Summary

35421Scalability

44432Portability

35442Expressive Power

34221Ease of development

34433Standardization

34221Reliability

33444Latency

44433Predictability

33422Efficiency

RTVMCore
Profile

CoreRTSJJNI

Kelvin Nilsen 63

... ..
Summary

n Different technologies support different needs
– JNI: for quick & dirty, small, “portable” real-time

components
– RTSJ: similar, with better performance, but only works

with “non-standard” Java virtual machines
– Core: real-time infrastructure code, low level, high

performance
– Core Profile: large, complex real-time systems,

dynamic behavior, high-level programming
– RTVM: easy integration of reusable non-real-time

components, medium-complexity real-time systems

Kelvin Nilsen 64

... ..
How to Help?

n If industry and government truly desire
open standards and conformance, you
must participate:
– Review draft specifications and provide

feedback
– Help fund development of prototype

implementations and trial case studies
– Guide the development of certification and

branding programs that suit your objectives

