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Background

Real-Time Core Specification is Released

High Integrity Profile
– A subset of APIs in the RT-Core

– Address requirements of
• Fault Tolerance
• High Integrity and Safety Critical systems

– Work in progress, led by Aonix
• Draft circulated for internal J-Consortium review
• CALL FOR PARTICIPATION e.g. from Telecoms
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Characteristics

Partitioning
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Partitioning - single processor
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Partitioning - hot standby
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Partitioning - distribution
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Critical 
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• Support for Distributed Systems is being addressed by
“Real-Time and Embedded Distributed Middleware Profile”
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Partitioning - interfaces

Critical Component

Remote Method Invocation
Interface

Parameters / Results
(No Addresses)

Physical Memory
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Partition Construction

Static Linking only
– Need to verify statically every byte loaded

Native code execution only
– Temporal constraints prohibit interpreters

“Control” of the processor
– HI partition will (normally) contain main()

– Low-level interaction with underlying board
• Intended to be user-configurable
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Memory Management (1)

Execution
Stack

Default 
Allocation 

Context

Per Thread

Stackable Objects 
plus dynamic call 
frames

Non-Stackable 
Objects

No garbage collector!
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Memory Management (2)

Allocation context re-used for each run()
– Useful for Periodic, Sporadic, Interrupt tasks

Special allocation context supported
– Programmatic reclamation for Ongoing tasks

Allocation context must be non-fragmenting
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Concurrency

Periodic tasks (threads)
– Scheduled by the runtime system

Sporadic tasks (threads)
– Additional to RT Core, run by signalling Events

Interrupt “tasks” (handlers)
– Triggered by hardware / software interrupt

Ongoing tasks (not run automatically)
– Often background tasks in an infinite loop
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Task Interaction

Remove asynchronous task-to-task actions
– Stop, Interrupt, Wakeup, Suspend / Resume
– Important for replica determinism

PCP used for Synchronized methods
– Mutual exclusive access to Shared Resources

– Tight bound on the blocking time (no queues)

– Used in preference to mutexes, semaphores

Atomic regions used for interrupt handlers
– Can signal Event object to run Sporadic task
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Task Interaction Example

Periodic Task
Sporadic Task

Interrupt Task

PCP Objectput get

Event objectsignal run

H/w interrupt
run
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Scheduling

Priorities as in the RT-Core
– Interrupt range + non-interrupt range

Normal FIFO_Within_Priorities scheduling
Task inherits ceiling priority when in PCP

Each task has :
– Base priority (at creation time)

– Active priority (for scheduling)
• Higher of base and any inherited priority
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Sequential Execution

Need to be able to support :
– Access to physical memory addresses

• for example RT Core IO class and Device I/O Registry

– Exception handling
• Needed for failure recovery (roll back state)

– Finally clauses
• Tidy up when failure occurs

Must exclude any non-determinism
– Needed for replica consistency in fault tolerance
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Fault Tolerance (1)

Hardware-related considerations
– Keep standby replicas as identical as possible

• Eliminate constructs with race conditions
• Predictable execution even if clocks vary slightly

– Allow access to physical addresses
• e.g fast DMA to compare / update state in replica

– No addresses exported from HI partition
• Simplifies switching to replica on failure 
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Fault Tolerance (2)

Software-related considerations
– Checkpoint objects at specific points

• Save state in durable (persistent) storage
• Allow access to physical addresses for this storage

– Detect and recover from data errors
• Exception catching
• Roll back to saved state

– Tidy up in normal and exception case
• Finally clauses
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Summary (1)

The HI Profile supports :
– Partitioning

• Controlled access to code and data

– Determinism in sequential and concurrency
– Small footprint runtime system

Proposed features :
– Simplified memory management scheme

• Including access to physical memory addresses

– Simplified threads kernel
– Full exception handling and “finally” clauses
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Summary (2)

The HI Profile will be :
– Compatible with the Real-Time Core definition

– Compatible with the Distributed Middleware 
profile

A full solution for the entire range of 
software requirements

Needs YOUR review comments & participation


