
1

....................

...
...

...
...

...
..

Model for Supporting High
Integrity and Fault Tolerance
Brian Dobbing, Aonix Europe Ltd
Chief Technical Consultant

November 1999

November 1999 High Integrity and Fault Tolerance

... ..
Background

Real-Time Core Specification is Released

High Integrity Profile
– A subset of APIs in the RT-Core

– Address requirements of
• Fault Tolerance
• High Integrity and Safety Critical systems

– Work in progress, led by Aonix
• Draft circulated for internal J-Consortium review
• CALL FOR PARTICIPATION e.g. from Telecoms

November 1999 High Integrity and Fault Tolerance

... ..
Characteristics

Partitioning

Minimal Size

Determinism

Certifiability

Fault Tol

High Integ

Safety Crit

November 1999 High Integrity and Fault Tolerance

... ..
Partitioning - single processor

Non-Critical
e.g. JVM

Critical
Component

I/O devices
Physical memory access

Other peripherals

Network

Controlled
Communication

November 1999 High Integrity and Fault Tolerance

... ..
Partitioning - hot standby

Network

Critical
Component

Controlled
Communication

Critical
Component

I/O devices / Physical memory

Controlled
Communication

Messages

November 1999 High Integrity and Fault Tolerance

... ..
Partitioning - distribution

Network

Critical
Component

Controlled
Communication

Critical
Component

I/O devices / Physical memory

Controlled
Communication

Non-Critical
Component

MessagesMessages

• Support for Distributed Systems is being addressed by
“Real-Time and Embedded Distributed Middleware Profile”

2

November 1999 High Integrity and Fault Tolerance

... ..
Partitioning - interfaces

Critical Component

Remote Method Invocation
Interface

Parameters / Results
(No Addresses)

Physical Memory

November 1999 High Integrity and Fault Tolerance

... ..
Partition Construction

Static Linking only
– Need to verify statically every byte loaded

Native code execution only
– Temporal constraints prohibit interpreters

“Control” of the processor
– HI partition will (normally) contain main()

– Low-level interaction with underlying board
• Intended to be user-configurable

November 1999 High Integrity and Fault Tolerance

... ..
Memory Management (1)

Execution
Stack

Default
Allocation

Context

Per Thread

Stackable Objects
plus dynamic call
frames

Non-Stackable
Objects

No garbage collector!

November 1999 High Integrity and Fault Tolerance

... ..
Memory Management (2)

Allocation context re-used for each run()
– Useful for Periodic, Sporadic, Interrupt tasks

Special allocation context supported
– Programmatic reclamation for Ongoing tasks

Allocation context must be non-fragmenting

November 1999 High Integrity and Fault Tolerance

... ..
Concurrency

Periodic tasks (threads)
– Scheduled by the runtime system

Sporadic tasks (threads)
– Additional to RT Core, run by signalling Events

Interrupt “tasks” (handlers)
– Triggered by hardware / software interrupt

Ongoing tasks (not run automatically)
– Often background tasks in an infinite loop

November 1999 High Integrity and Fault Tolerance

... ..
Task Interaction

Remove asynchronous task-to-task actions
– Stop, Interrupt, Wakeup, Suspend / Resume
– Important for replica determinism

PCP used for Synchronized methods
– Mutual exclusive access to Shared Resources

– Tight bound on the blocking time (no queues)

– Used in preference to mutexes, semaphores

Atomic regions used for interrupt handlers
– Can signal Event object to run Sporadic task

3

November 1999 High Integrity and Fault Tolerance

... ..
Task Interaction Example

Periodic Task
Sporadic Task

Interrupt Task

PCP Objectput get

Event objectsignal run

H/w interrupt
run

November 1999 High Integrity and Fault Tolerance

... ..
Scheduling

Priorities as in the RT-Core
– Interrupt range + non-interrupt range

Normal FIFO_Within_Priorities scheduling
Task inherits ceiling priority when in PCP

Each task has :
– Base priority (at creation time)

– Active priority (for scheduling)
• Higher of base and any inherited priority

November 1999 High Integrity and Fault Tolerance

... ..
Sequential Execution

Need to be able to support :
– Access to physical memory addresses

• for example RT Core IO class and Device I/O Registry

– Exception handling
• Needed for failure recovery (roll back state)

– Finally clauses
• Tidy up when failure occurs

Must exclude any non-determinism
– Needed for replica consistency in fault tolerance

November 1999 High Integrity and Fault Tolerance

... ..
Fault Tolerance (1)

Hardware-related considerations
– Keep standby replicas as identical as possible

• Eliminate constructs with race conditions
• Predictable execution even if clocks vary slightly

– Allow access to physical addresses
• e.g fast DMA to compare / update state in replica

– No addresses exported from HI partition
• Simplifies switching to replica on failure

November 1999 High Integrity and Fault Tolerance

... ..
Fault Tolerance (2)

Software-related considerations
– Checkpoint objects at specific points

• Save state in durable (persistent) storage
• Allow access to physical addresses for this storage

– Detect and recover from data errors
• Exception catching
• Roll back to saved state

– Tidy up in normal and exception case
• Finally clauses

November 1999 High Integrity and Fault Tolerance

... ..
Summary (1)

The HI Profile supports :
– Partitioning

• Controlled access to code and data

– Determinism in sequential and concurrency
– Small footprint runtime system

Proposed features :
– Simplified memory management scheme

• Including access to physical memory addresses

– Simplified threads kernel
– Full exception handling and “finally” clauses

4

November 1999 High Integrity and Fault Tolerance

... ..
Summary (2)

The HI Profile will be :
– Compatible with the Real-Time Core definition

– Compatible with the Distributed Middleware
profile

A full solution for the entire range of
software requirements

Needs YOUR review comments & participation

