
JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

JavaTM & Real-Time

École IN2P3 d’informatique: Temps Réel

Christos Kloukinas

Verimag
http://www-verimag.imag.fr

Centre Équation
2, av. de Vignate
38610 GIÈRES

Telephone/Fax: +33 (0) 4 76 63 48 32 / 50
E-mail: Christos.Kloukinas@imag.fr

29 May 2003

Abstract

Java is a language with a lot of merits, whose use for Real-Time systems could help in increasing
their quality.

In this tutorial we will examine its characteristics, its advantages & disadvantages for Real-Time
programming, as well as, the RTSJ proposal for rendering Java more suitable for Real-Time programming.

Contents

Contents 1

1 Introduction 2

2 What’s Java? 2
2.1 Moving from C to Java in 5 Minutes . 2

3 Concurrent Programming with Java 4
3.1 Threads in Java . 4

3.1.1 Interrupts in Java . 5
3.2 Monitors in Java . 5
3.3 Timers in Java . 7
3.4 Java Native Interface . 7

4 Java for Real-Time Programming 9
4.1 Speeding-up Java . 9

4.1.1 To JIT or to AOT? That is the question. 9
4.2 Real-Time GC . 10
4.3 Real-Time Specification for Java . 10

4.3.1 RTSJ: Thread Scheduling and Dispatching . 10
4.3.2 RTSJ: Memory Management . 11
4.3.3 RTSJ: Synchronisation and Resource Sharing . 14

Christos Kloukinas page 1 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

4.3.4 RTSJ: Asynchronous Event Handling . 15
4.3.5 RTSJ: Asynchronous Transfer of Control . 15

4.4 Other Real-Time Java Proposals . 16

5 Conclusions 17

Bibliography 18

A Listings 20

1 Introduction

Java is a language with a lot of merits and is quickly gaining acceptance by developers. In this tutorial
we will examine its characteristics which make it advantageous for Real-Time systems, those which pose
a problem, as well as some of the proposals which have been made for better adjusting it to a Real-Time
setting.

For the purposes of this tutorial, we use the term Real-Time as referring to Hard Real-Time systems,
i.e., those where missing a deadline is considered as a system failure. This in contrast to the case of Soft
Real-Time systems, where missing a deadline can sometimes be an acceptable situation, where the operation
of the system is simply degraded (e.g., losses of some image frames in a video conferencing application).
Even in the setting of Hard Real-Time systems, we can identify those which are of a large size (e.g., an air
traffic control system) or of a small size (e.g., an embedded controller of the breaks of a car). This tutorial
has been developed with the second case in mind. However, both these cases share a number of constraints
such as a need for determinism, fast execution, an ability to specify the scheduling of tasks in the system,
etc.

This tutorial starts with a quick introduction to the Java language and to Object-Oriented programming.
Then, we examine the existing mechanisms in Java for doing multi-threaded programming, as well as the
Java Native Interface. Following this, we identify a number of problems which make it difficult to use Java
in a Real-Time setting and look at the different solutions (either existing or proposed) which allow one to
program a Real-Time system using (a variant of) Java.

2 What’s Java?

Among the characteristics of Java [5] that make it an attractive language are the following: Object-
Orientation (O-O), type-safety, security, portability, GUI/Net/concurrency awareness, and automatic garbage
collection (GC). Being O-O means that it is easier to structure a program, break up the interfaces and the
implementations of the different data structures, etc. Java is more type-safe than C/C++. This, in addition
to the fact that it imposes checks on array bounds and disallows pointer arithmetic, make it a lot more safe
and easier to analyse and to optimise by a compiler. It comes with a large standard library for doing GUI’s,
network programming and has built-in support for threads and synchronisation on objects shared among
different threads. Its automatic garbage collection removes most of the memory-related problems that are
so often in programs written using C/C++.

Portability is guaranteed by fixing the size and byte order of the basic data-types, using a common format
(bytecode) for Java programs which is interpreted by a Java virtual machine (JVM) [12] and explicitly
defining aspects such as floating point operations, the memory model, etc.

2.1 Moving from C to Java in 5 Minutes

Java has no struct construct. One creates new data types by using the class concept. A class has fields
just like a structure. Unlike a structure, a class also has methods, i.e., functions which operate on its fields,
thus making it clearer which are the available functions on a particular data object. In fact, this is the
cornerstone of O-O programming; it allows one to move the specific implementation of a function away from
its uses and hides the selection mechanism at the site of each use. This greatly facilitates code development

Christos Kloukinas page 2 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

(since the selection mechanism is done automatically by the O-O language) and the maintenance of libraries
(since the O-O language is capable of selecting different/new function definitions). In other words, O-O is a
high level if.

In addition, a class allows one to declare how access to its fields and methods should be performed. One
can declare a field (method) as public (i.e., accessible by every other class which can access the package of
this class), protected (i.e., accessible by classes which belong to the same package, or those which inherit
from it), or as private (i.e., accessible only by methods of the same class). Other field (& method) modifiers
are the static one, which declares that the field is shared by all object instances of the class (i.e., it is a
global variable), and the final one, used for preventing sub-classes from overriding or hiding this field.
Class methods can additionally be declared as synchronized (i.e., the method body is as if it was inside
a synchronized(this) block), and strictfp to indicate that all expressions in the method are FP-strict.
Quoting from the [12, section 2.18]:

Within an FP-strict expression, all intermediate values must be elements of the float value set or
the double value set, implying that the results of all FP-strict expressions must be those predicted
by IEEE 754 arithmetic on operands represented using single and double formats. Within an ex-
pression that is not FP-strict, some leeway is granted for an implementation to use an extended
exponent range to represent intermediate results; the net effect, roughly speaking, is that a calcu-
lation might produce “the correct answer” in situations where exclusive use of the float value set
or double value set might result in overflow or underflow.

In other words, an FP-strict expression uses a float (or double according to the context) type for all
intermediate results, while a non FP-strict expression allows using larger precision intermediate values than
float (resp. double). In Java, classes can have inner classes and implement interfaces (a way to get
multiple inheritance).

Java has no union construct. A union is obtained in an O-O language through polymorphism (see Ta-
ble 1).

Table 1: Declaring a union in Java
C code: Java code:

union A {

int i;

float f;

};

abstract class A { abstract public process(); }

class intA extends A { public int i; public process() {/* Use the int */};}

class floatA extends A { public float f; public process(){/* Use the float */};}

struct B {

char c;

union A {

int i;

float f;

};

};

abstract class B { public char c; abstract public process();}

class intB extends B { public int i; public process() {/* Use c & i */};}

class floatB extends B { public float f; public process() {/* Use c & f */};}

The enum construct is missing as well; one can either use constant fields of a class for each of the
enumerated values (which will now be typed) or use polymorphism to create a different class for each of
them, overriding their method functions accordingly.

Java offers two ways to do multiple inheritance: extension of interfaces and composition. In the latter
we declare objects of the classes we wish to inherit from as member fields of the current class and then
implement the methods of the current class by explicitly calling the methods of these member fields.

Java also offers certain reflection mechanisms. For example, given an object o we can use the method
o.getClass() to retrieve its class c, from which we can retrieve its methods (c.getMethods()), its package

Christos Kloukinas page 3 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

(c.getPackage()), etc. Given a class c and an object o, we can query the class to see if the object is an
instance of it, through c.isInstance(o).

In order to further allow structuring of code and provision of libraries from third parties, Java offers
packages which are used as a compilation unit. Inside a package only one class can be declared as
public. Through packages we can ensure that class names of different libraries will be different (e.g.,
LasVegas.Roulette versus Russian.Roulette).

Last but not least, Java has no object destructors! This is because, in pure Java programs there is no
need for such methods. Java objects are garbage collected automatically and, therefore, we do not have to
free the children of an object ourselves. The finalize() method which one may assume is Java’s name for
destructors, is to be used only when programming with the Java Native Interface (JNI) [11] and, even then,
should be used sparingly (more on this on sub-section 3.4).

3 Concurrent Programming with Java

Java has built-in support for multi-threaded programming. It allows one to create new threads and thread
groups (see java.lang.Thread & ThreadGroup) so as to easily describe the parallelism inherent in a system.
In order to allow mutual exclusive access by different threads when they are accessing shared objects, Java
offers built-in support for monitors and, in doing so, ensures that objects will be unlocked when a thread
exits a critical region, even if it does so abruptly. This greatly simplifies multi-threaded programming with
respect to C/C++. The latter languages do not offer any direct support for multi-threaded programming or
for mutual exclusion; one is thus forced to use an add-on library which offers these mechanisms (e.g., Posix
threads, see [13]). However, simulating monitors with the lock() and unlock() functions is difficult and
error-prone, since the cases where a thread can exit a critical region due to an exception are numerous and
difficult to control. By incorporating direct support for monitors this problem disappears, since it is now
the language itself which is ensuring the correct behaviour automatically.

Another interesting feature of Java is its support for timers (see java.util. Timer and its companion
class java.util.TimerTask). Timers are used for scheduling tasks for future execution in a background
thread. Tasks may be scheduled for one-time execution, or for repeated execution at regular intervals.

Finally, Java offers support for calling a function written in some other language (e.g., C, assembly),
through the Java Native Interface (JNI). The rest of this section is devoted to examining these mechanisms
in more detail.

3.1 Threads in Java

As aforementioned, Java has built-in support for multi-threaded programming. That is, it supports multiple
threads, synchronisation on objects shared among different threads, timers, etc. Threads in Java have to
implement the interface java.lang.Runnable, that is, implement the method void run(). This method
provides the code which will be used as the main() function of the thread. Threads have priorities, whose
values belong to the integer interval defined by the MIN_PRIORITY and MAX_PRIORITY static fields of the class
java.lang.Thread. The default priority of a thread is respectively given by the static field NORM_PRIORITY.
One should note that these values are not predefined and depend on your particular implementation. In
addition, the standard does not guarantee that these priorities will be honoured by the scheduler. As stated
in [5, section 17.12]:

When there is competition for processing resources, threads with higher priority are generally
executed in preference to threads with lower priority. Such preference is not, however, a guarantee
that the highest priority thread will always be running, and thread priorities cannot be used to
reliably implement mutual exclusion.

In addition, user threads are by definition of lower priority than the GC. That is, even if a thread has as
priority java.lang.Thread.MAX_PRIORITY it can be stopped by the GC and be forced to wait until the
GC finishes, which is an undetermined period of time. This is because the standard does not impose any
particular constraint on the implementation of the GC, so an implementation (i.e., a JVM or a compiler)

Christos Kloukinas page 4 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

must be conservative and assume that the particular GC used is not interruptible, to avoid threads accessing
the heap when it is in an inconsistent state.

A Java thread can be characterised as a dæmon thread, meaning that it will be automatically exited
once all other non-dæmon threads exit. One can change a thread into a dæmon thread (and back) using
a method of the java.lang.Thread class called setDaemon(boolean on) and query whether a thread is a
dæmon with the method isDaemon().

Finally, one can control the stack size of a thread by using the constructor (tested with JDK 1.4.1):

Thread(ThreadGroup group, Runnable target, String name, long stackSize)

The ThreadGroup needed can be a new group of threads, or it can be the current one, that is, the
Thread.current_thread().getThreadGroup().

Listing 2 shows a small multi-threaded application. Another way to declare the threads would have
been to define them as classes implementing the Runnable interface, as shown in Listing 3 (listings start
at Appendix A which is on page 20). Then, we would have used that class as the Runnable target in the
aforementioned thread constructor. That means that lines 38–43 of Listing 2 would now have been as shown
In Listing 1. Note, however, that since Java lacks the sizeof() operator, it is difficult to derive a correct
size for the stack. For this reason, the stackSize is not necessarily used! That is, Java can decrease it,
augment it, or simply ignore it altogether! Indeed, since the stackSize we have declared is equal to 1 Byte,
it is evident that our demand was silently ignored 1.

Listing 1: Using Runnables – (see Listing 3 for the full code)

/* 38 */ ThreadGroup myGroup = Thread.currentThread().getThreadGroup();

/* 39 */ long stackSize = 1L; // Just 1 Byte...

/* 40 */ Thread tOne = new Thread(myGroup, (Runnable) threadOne,

/* 41 */ "\tthreadOne:", stackSize);

/* 42 */ Thread tTwo = new Thread(myGroup, (Runnable) threadTwo,

/* 43 */ "\t\tthreadTwo:", stackSize);

/* 44 */ tOne.setPriority(java.lang.Thread.MAX_PRIORITY - 0);

/* 45 */ tTwo.setPriority(java.lang.Thread.MAX_PRIORITY - 1);

/* 46 */ tOne.start();

/* 47 */ tTwo.start();

Other methods of the class Thread which are of interest are the boolean holdsLock(Object), interrupt(),
join(), yield(), sleep(/* delay */), and destroy(). Methods resume(), stop() and suspend() have
been deprecated, since they are unsafe [16]. Even though destroy() is roughly equivalent to a suspend(),
it is not deprecated, but it is left for cases where a program is willing to risk a deadlock rather than exit
outright. However, it is not currently implemented. . .

Coming back to thread scheduling, if you try to execute Listing 2 you will get a different output depending
on your system. Table 2 shows the output I got when using a SUN workstation (was the same all the times
I tried it) and the two different outputs I got when using a Linux machine.

3.1.1 Interrupts in Java

Java allows a thread to be interrupted through the interrupt() method. This method sets a pollable and
resettable flag in the target thread and returns. The targeted thread then receives a synchronous exception
if it is blocked at an invocation of wait(), sleep(), or join(). If, however, the targeted thread is not
blocked in such a call, then all is done is to set its interrupted flag, without throwing an exception. The
targeted thread can then check later on whether it has been interrupted through the isInterrupted method
(see Listing 4).

3.2 Monitors in Java

A monitor for the shared object obj is declared in a Java program through the language construct:

1Unless Java can execute a thread with such a small stack. . .

Christos Kloukinas page 5 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Table 2: Thread scheduling
SUNSparc Solaris

main: Finished initialisation - my priority is 5
threadOne: Started
threadOne: my priority is 10
threadOne: My parent is main:

threadTwo: Started
threadTwo: my priority is 9
threadTwo: My parent is main:

Intel Linux
output (a)

threadOne: Started
threadTwo: Started

main: Finished initialisation - my priority is 5
threadOne: my priority is 10
threadOne: My parent is main:

threadTwo: my priority is 9
threadTwo: My parent is main:

output (b)
threadOne: Started

main: Finished initialisation - my priority is 5
threadOne: my priority is 10
threadOne: My parent is main:

threadTwo: Started
threadTwo: my priority is 9
threadTwo: My parent is main:

synchronized(obj) { /* critical region code */ }

The opening brace corresponds to the entering of the monitor and the closing brace to exiting it. Java
ensures that even if we exit abnormally this synchronised block due to an exception, a return or a jump (i.e.,
a break, a continue, or a throw) the monitor will be exited correctly, properly unlocking the object obj.

Cooperation of threads is also supported in Java through the method wait() & its duals notify()
and notifyAll(), which are inherited from the java.lang.Object class by all Java objects. The wait()
method causes the calling thread to block until it receives a notification. When blocking on a wait()
method a thread exits the monitor, allowing thus other threads to access the shared object. When a thread
is notified and returns from the call to wait(), then it automatically re-enters the monitor which it occupied
at the moment when it called the wait(). A thread can perform a notification using the notify() and
notifyAll() methods; the first in order to notify one among the waiting threads (selected in an unspecified
manner), while the second in order to notify all of the waiting threads. If no thread is waiting when a notify
occurs then the notification is lost and if there are more than one threads waiting for a notification then the
choice of the waiting thread to be notified is performed in an unspecified manner, as it better suits the current
implementation. In the case of a notifyAll(), even though all waiting threads will be notified, only one of
them can return from the call to wait(), since for doing so it also needs to re-enter the monitor. There are
also two versions of the wait() method which accept as parameter a period of time the thread is willing to
wait for a notification, after which, the wait times-out. The first version accepts a long argument denoting
the relative time-out in milliseconds, while the second version accepts (in addition to the milliseconds) a
second int argument which denotes the additional nanoseconds that the thread is willing to wait.

We’ve already seen how the choice of the thread to be notified is unspecified and, thus, unrelated to its
priority. Indeed, the standard does not mention anything about multiple wait queues or that these should
be sorted according to the priorities of the threads which are waiting (see [5, section 17.14]). It does not
mention anything concerning the priority inversion problem either and does not demand any specific locking

Christos Kloukinas page 6 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

protocol.
Finally, it should be mentioned that locking an object is not similar to using a mutex. Indeed, in [5,

section 17.5] it is noted:

moreover, a thread may acquire the same lock multiple times and does not relinquish ownership
of it until a matching number of unlock operations have been performed.

SUN’s implementation of Java implements this using a mutex and a counter but another implementation
could do it differently.

Listing 2 shows how one can use monitors, as well as, the wait() and notifyAll() methods.

3.3 Timers in Java

Java has a class (java.util.Timer) for defining timers, that is, it provides a facility for threads to schedule
tasks (java.util.TimerTask) for future execution in a background thread. Tasks may be scheduled for
one-time execution, or for repeated execution at regular intervals. Timers do not offer real-time guarantees:
they schedule tasks using the Object.wait(long) method. In fact, if a timer task takes excessive time to
complete, it can delay the execution of subsequent tasks. These subsequent tasks may then end up executing
in rapid succession when (and if) the offending task finally completes. One should also note that, by default,
the task execution thread does not run as a dæmon thread, so it is capable of keeping an application from
terminating. Listing 5 shows a small example using timers.

The periodic timer tasks can be scheduled in two different ways, either according to a fixed-delay exe-
cution, or according to a fixed-rate one. In the former case, each execution of a timer task starts at a time
instance which is period milliseconds after the end of the previous execution of this timer task. That is, if
a timer task gets delayed for any reason, then the subsequent executions of it will be delayed by the same
duration. Thus, the timer may drift in time but all executions will be period milliseconds apart. In the
latter case, the period is relative to the first execution, and therefore if a timer task execution gets delayed,
then subsequent timer task executions may occur in rapid succession, in an attempt to keep the frequency
of execution as close as possible to the reciprocal of the period.

Finally, we have the possibility to cancel() a timer task or a timer. If we cancel a timer, then all the
timer tasks which were scheduled with it will be cancelled (a timer is reusable by different timer tasks).

3.4 Java Native Interface

Another option we have in Java is to use JNI [11] in order to call functions implemented in another language.
To show how one can use JNI we will use an example which prints the thread’s data and a welcoming message.
Let us assume that we have the Java program shown in Listing 6 (on page 24). There, we can see that the
class HelloWorld has a static block which loads at start-up the library “HelloWorld”. Using JNI, we will
provide this library ourselves by writing it in C (see Listing 7).

Finally, we put all the parts together, doing the following (on a Linux machine using the Bourne shell
(sh), where Java has been installed at /usr/local/soft/jdk/1.4.1) 2:

$ javac hello-jni.java

$ javah -jni HelloWorld

$ gcc -shared -o libHelloWorld.so hello-jni.c \

> -I/usr/local/soft/jdk/1.4.1/include \

> -I/usr/local/soft/jdk/1.4.1/include/linux

$ java -Djava.library.path=. HelloWorld

Starting Java_HelloWorld_print

Thread "Thread[The Main from Java,5,main]" says using JNI: Hello World!

$

Note: To find the type of a field or method of a class, e.g., of java.lang.Thread, you can use:

javap -s java.lang.Thread

2Java version (java -version) is 1.4.1 HotSpot Client VM (build 1.4.1-b21, mixed mode), GCC version (gcc
--version) is 3.2 and Debian kernel’s release & machine (uname -rm) is 2.4.18-bf2.4 i686.

Christos Kloukinas page 7 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

In the notation used by JNI, basic types are denoted as (i) V, (ii) Z, (iii) C, (iv) B, (v) S, (vi) I, (vii) J, (viii)
F and (ix) D for (i) void, (ii) boolean, (iii) char, (iv) byte, (v) short, (vi) int, (vii) long, (viii) float
and (ix) double respectively. An object of a class X is denoted LX; and an array is denoted by a leading
square bracket. Arguments of a method are placed inside parenthesis and the return value follows after the
parenthesis. So, if we had the method

java.lang.String[] foo(java.lang.Thread[] array,

java.lang.String str,

int i,

long j)

then the type of this method would be:

([Ljava/lang/Thread;Ljava/lang/String;IJ)[Ljava/lang/String;‘

Through JNI we can enter or exit monitors, allocate memory using Java’s new, etc. So, it might seem
that this is a good way to bypass all of Java’s shortcomings with respect to Real-Time programming, by
implementing the missing mechanisms using JNI. However, this is not true. First of all, JNI is a rather
heavy and slow mechanism, exactly because of its generality and wish for portability. Queries for methods,
fields and classes are performed using strings as arguments and traversing the internal data structures of
the JVM in order to locate the corresponding object. This makes the queries themselves portable, since
no internal data structures need to be exported, but the execution time needed to perform such a query
increases drastically. In addition, it becomes impossible for an optimising compiler to analyse the native
code for Java classes and methods used, so as to be able to remove the unused ones. One might be better
served by a less portable but faster native interface, such as the Cygnus Native Interface (CNI) [3] which
is offered by GCJ [4], the GNU Java front-end to the GCC compiler. The GCJ compiler considers all Java
classes as C++ classes (but not vice versa) and thus allows one to write code in C++ which is using directly
the Java classes. Listing 8 shows the corresponding C++ implementation of the native call using CNI. The
commands to use in this case are the following:

$ gcj -C hello-jni.java

$ gcjh HelloWorld

$ gcjh -stubs HelloWorld

$ gcc -shared -o libHelloWorld.so HelloWorld.cc -I‘pwd‘

$ gcj -o HelloWorld --main=HelloWorld hello-jni.java \

> -L‘pwd‘ -Wl,-R‘pwd‘ -lHelloWorld

$./HelloWorld

Starting Java_HelloWorld_print

Thread "Thread[The Main from Java,5,main]" says using CNI: Hello World!

$

However, there is another more basic reason for which JNI is difficult to use for doing Real-Time thread
manipulations. This is the fact that Java threads are not necessarily implemented using the native threads
of your system. If they’re indeed implemented using native threads, then it might be easier to manipulate
them in a Real-Time system. If, however, they’re not (e.g., implemented using setjmp/longjmp as in the
Green threads in SUN’s Java implementation) then it’s anything but obvious. . .

Finally, we must note that when using JNI and the native function we call allocates dynamic memory,
then we may need to use the finalize() method. Its purpose is to allow us to manually deallocate this
memory when the Java object will be garbage collected. Java cannot do so automatically, since this memory
was not allocated through its mechanisms and is therefore unknown and unreachable by the GC. Take note
of this part of the Java Language Specification [5, section 12.6]:

The Java programming language does not specify how soon a finalizer will be invoked, except to
say that it will happen before the storage for the object is reused. Also, the language does not
specify which thread will invoke the finalizer for any given object. It is guaranteed, however, that
the thread that invokes the finalizer will not be holding any user-visible synchronization locks when
the finalizer is invoked. If an uncaught exception is thrown during the finalization, the exception
is ignored and finalization of that object terminates.

The finalize method declared in class Object takes no action.

The fact that class Object declares a finalize method means that the finalize method for any
class can always invoke the finalize method for its superclass, which is usually good practice.

Christos Kloukinas page 8 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

(Unlike constructors, finalizers do not automatically invoke the finalizer for the superclass; such
an invocation must be coded explicitly.)

More on JNI can be found at http://java.sun.com/docs/books/tutorial/native1.1.

4 Java for Real-Time Programming

Java has lots of merits but it is easy to see that it has certain problems with respect to Real-Time program-
ming. These problems can be summarised as:

• Java is slow;

• Java’s memory model [5, chapter 17] is especially convoluted (there’s already a new draft specification
on this, see [14]);

• The GC is unpredictable and can block you for an undetermined period of time;

• scheduling of threads is unpredictable;

• monitors may cause inversion of priorities and there is no support for multiple wait queues or for queues
sorted according to thread priority;

• Java’s design for portability implies that it cannot take advantage of your OS’s capabilities — Java
ignores these capabilities on purpose.

The rest of this section examines these problems in more detail.

4.1 Speeding-up Java

Java has got the reputation of being a slow language; indeed, certain benchmarks showed it to be 20 times
slower than C++. However, we should note here that describing a language as slow is misleading. An
implementation of a language can be slow but that does not mean that the language itself has this disad-
vantage. No one would ever accuse C of being a “slow” language, just because a particular implementation
of it is slow. Therefore, we must examine the specification itself to see whether there is a specific character-
istic/mechanism which is obligatory and can cause all possible implementations of the language to be slow.
The specification of Java does not have any such demand per se. Indeed, it has been shown that execution
speed becomes comparable to that of C++ when compiling Java directly to native code. For this reason,
some JVMs use a technique called Just In Time (JIT) compiling, which compiles the Java bytecodes of an
application to native code during the execution itself. Another approach is to use an Ahead Of Time (AOT)
compiler which compiles the Java application into native code before its deployment.

Since the type-safety of Java is stronger than that of C++ and Java does not allow pointer arithmetic or
casting to incompatible types (e.g., casting a pointer towards an int, or a pointer of a class to a pointer of
an unrelated class), it is in fact easier for a compiler to apply aggressive optimisations which are impossible
in a C/C++ environment.

4.1.1 To JIT or to AOT? That is the question. . .

Let us now compare JIT with AOT. JIT allows us to be compatible with the standard specification, since
it can do all that an interpreter-based JVM can do. Indeed, a JIT consists of an interpreter-based JVM
which under specific conditions (e.g., execution of a portion of code multiple times) decides to compile a
part of the application on-the-fly. Its disadvantage is that the compilation itself is a rather heavy task which
introduces memory and computation demands by itself. To decrease these demands JIT compilers do not
perform any aggressive optimisations. In fact, since they only compile small portions of the code each time,
it would be difficult to apply any aggressive optimisations, even if the time & memory needed for doing so
could be afforded.

Christos Kloukinas page 9 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

AOT compilers on the other hand can be highly aggressive with respect to optimisations and therefore
produce highly efficient code, since they are used before the actual deployment of the application and they
have a global view of all the code of the application. For example, this allows them to remove synchronisations
when an object is not shared among different threads, which is the most usual case. Another possible
optimisation is to remove the checks for out of bound accesses when it can be shown that these can never
occur. A critique of the AOT approach is that the size of the produced native code is bigger than the size
of the initial bytecodes, since bytecodes are usually more “expressive” than native instructions. However,
there is also the opposite opinion, since bytecodes have to include a large set of data structures (e.g., class,
object, field, and method names, file and line numbers, etc.) whose size cannot be optimised through sharing
among class files, but an AOT compiler can easily optimise.

An aspect of Java which could possibly be problematic is its demand for Java applications to be able to
load new classes at run-time. Since these classes may be provided in the form of bytecodes, we may be forced
to include in the executable a bytecode interpreter, if we desire this functionality and/or wish to abide by
the standard.

Finally, there always exist the possibility of using a hardware-based solution through the use of a Java
chip, or a co-processor to which the main processor delegates the task of executing the Java bytecodes, or
finally as a single hybrid processor which contains hardware logic for processing Java bytecodes as well as
native instructions.

4.2 Real-Time GC

Automatic GC as well has long been considered slow, expensive and unpredictable but these characteristics
are not shared by all the different GC techniques. Indeed, there are GCs which are predictable, interruptible,
fast, with small memory demands, etc. Some benchmarks even showed that using a GC is comparable in
speed to manually deallocating memory in C (and with the additional safety).

Most of these techniques were developed for systems with a lot of memory, which renders their use on
embedded systems questionable. However, there are other ways to obtain automatic GC for embedded
systems without sacrificing speed and memory and above all safety. Such a technique consists of statically
identifying the moment where each object can be garbage collected, so that the corresponding frees can be
inserted automatically by the compiler itself at the appropriate places.

4.3 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) [2] specifically examines seven areas of Java for Real-Time pro-
gramming (from the introduction of [2]): (i) Thread Scheduling and Dispatching, (ii) Memory Management,
(iii) Synchronisation and Resource Sharing, (iv) Asynchronous Event Handling, (v) Asynchronous Transfer
of Control, (vi) Asynchronous Thread Termination, and (vii) Physical Memory Access.

The solutions it proposes for these areas were derived using the following guiding principles (again from
the introduction of [2]): (i) Applicability to Particular Java Environments, (ii) Backward Compatibility, (iii)
Write Once (Carefully), Run Anywhere (Conditionally), (iv) Current Practice versus Advanced Features, (v)
Predictable Execution, (vi) No Syntactic Extension, and (vii) Allow Variation in Implementation Decisions.
Notice that there is a strong demand for reusing the Java application code and, even more, the Java devel-
opment environments and tools which have been developed so far, as well as, for allowing the specification
to be implemented differently, depending on the particular needs of a sub-area of Real-Time systems (large
versus embedded, hard versus soft, etc.).

In the following text we examine these areas in more detail. Note that the presentation has been heavily
based on Dr. Bollella’s slides [1].

4.3.1 RTSJ: Thread Scheduling and Dispatching

Since a single scheduling policy does not suffice to cover all possible needs, the RTSJ has taken the option
of demanding one particular policy (PriorityScheduler) as always available and at the same time allow-
ing other scheduling policies (e.g., RMA, EDF, etc.) to be declared and used. Thus, the RTSJ provides
mechanisms for declaring methods to create, manage, admit and terminate Real-Time Java threads.

Christos Kloukinas page 10 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

The required scheduling policy (PriorityScheduler) is a fixed priority, preemptive scheduler, where the
priorities are provided by the application, and it offers at least 28 unique priority levels. The demand for
only 28 unique priorities is a compromise, since a Real-Time Java application may execute along with other
non-Java applications which may need to use priorities above, below, or both of those of the Real-Time Java
application for system activities.

A scheduling policy affects an object which implements the Schedulable interface, that is, one whose
base class is RealtimeThread, NoHeapRealtimeThread, or AsyncEventHandler. Objects belonging to classes
which implement the Schedulable interface need have a reference to a Scheduler object, which governs
how the Schedulable objects should be scheduled.

A RealtimeThread extends the Thread class and is managed by a scheduler. It may use the heap or
other sections of the memory, participate in asynchronous transfer of control and thread termination and
directly access the physical memory.

A NoHeapRealtimeThread extends the RealtimeThread class and it is not allowed to read or write
on the heap, or even to manipulate references to objects on the heap. Thus, it must be created within a
particular scoped memory area. Thanks to these constraints, a NoHeapRealtimeThread can preempt the
GC, since it does not interfere with it.

Finally, a AsyncEventHandler is used for handling asynchronous events and at reception of such an event
executes its run() method on a separate thread.

A Scheduler object is created with a number of parameters which define (i) the eligibility metric to
use for deciding what should be the executing thread (this is the scheduling policy itself), (ii) the priority
parameters, which can be either traditional priorities or importance priorities to be used in case of overload,
(iii) the release parameters (PeriodicParameters, AperiodicParameters, SporadicParameters), (iv) the
memory parameters for the memory demands of the Schedulable object, and, (v) the parameters concerning
this processing group, which allows us to manage many aperiodic or sporadic threads as a (meta-level)
periodic thread.

The importance priorities can be used in a setting where more than one threads share the same traditional
priority. This can easily be the case if we are using RMA to schedule threads, since threads with equal periods
will be assigned the same priority under such a scheduling policy. Importance priorities can therefore be
used to define which among these threads must execute when the system is in an overload situation and
cannot honour all the demands of this traditional priority group.

The release parameters contain a RelativeTime cost which identifies the maximum processing time
per period/minimum inter-arrival interval that the schedulable object is allowed to use. They also contain
an AsyncEventHandler overrunHandler which is invoked if an execution of the schedulable object exceeds
cost. However, on implementations which cannot measure execution time, the cost value is used only as a
hint to the feasibility algorithm and the overrunHandler is not invoked if the execution time exceeds cost.
One also uses the release parameters to declare the RelativeTime deadline associated with the object and
a AsyncEventHandler missHandler which should be invoked if the deadline is exceeded.

The constructors of these classes are shown in Table 3. Table 4 shows how one creates a new periodic
Real-Time thread.

4.3.2 RTSJ: Memory Management

In order to allow for deterministic Real-Time GC, the RTSJ introduced memory scopes. These define a tree
of heap memory regions which are used to give bounds to the lifetime of objects allocated within each region.
Objects residing in a memory scope are not managed by the GC. Instead, when a syntactic scope is exited,
then the memory scope associated with it may be immediately collected, freeing the objects within it en
masse (it’s like allocating an object on the execution stack). Note that we say may and not must, because
the standard simply demands that the objects of a scope should be collected (and their finalizers executed)
before the scope is to be re-entered, so this can be done anytime between the moment when a scope is exited
and the moment we re-enter it (if we ever do so. . .). So, again, avoid finalizers and do not depend on them
ever being executed ! Instead, try using the finally clause of a try {} catch () {} finally {} construct
to clean-up.

Objects which will survive a particular scope (e.g., a return value) must be allocated at least as high
as on the highest scope which contains another object that can refer to them. However, one may allocate

Christos Kloukinas page 11 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Table 3: Scheduling constructors

setScheduler(Scheduler sched,

SchedulingParameters sched_params,

ReleaseParameters release_params,

MemoryParameters mem_params,

ProcessingGroupParameters group)

PriorityScheduler()

PriorityParameters(int priority)

ImportanceParameters(int priority, int importance)

PeriodicParameters(HighResolutionTime start, /* null = start immediately */

RelativeTime period,

RelativeTime cost,

RelativeTime deadline, /* if null, use period */

AsyncEventHandler overrunHandler,

AsyncEventHandler missHandler)

AperiodicParameters(RelativeTime cost,

RelativeTime deadline,

AsyncEventHandler overrunHandler,

AsyncEventHandler missHandler)

SporadicParameters(RelativeTime minInterarrival,

RelativeTime cost,

RelativeTime deadline,

AsyncEventHandler overrunHandler,

AsyncEventHandler missHandler)

MemoryParameters(long maxMemoryArea, /* or MemoryParameters.NO_MAX (units=bytes) */

long maxImmortal, /* or NO_MAX (units=bytes) */

long allocationRate) /* or NO_MAX (units=bytes/sec) */

ProcessingGroupParameters(HighResolutionTime start,

RelativeTime period,

RelativeTime cost,

RelativeTime deadline,

AsyncEventHandler overrunHandler,

AsyncEventHandler missHandler)

Christos Kloukinas page 12 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

them even higher, in order to optimise the use of the heap towards same-sized scopes, fewer scopes, etc. This
shows that exiting a scope can be problematic if there are still objects in it which are referenced. For this
reason, scopes cannot be exited explicitly (i.e., through some scope.exit() method) but only implicitly.
That is, each scope is associated with some Runnable object (or a RealtimeThread) and is exited only when
its Runnable object exits. This ensures that there will be no more references to the objects allocated within
the scope, with the disadvantage that for each scope we wish to create we have to construct a new Runnable.

The top-most memory scope called the Immortal memory area is preallocated when the JVM starts and
is never deallocated. It is used for sharing objects among the Real-Time threads, as well as, among the
Real-Time threads and the non-Real-Time threads.

Scopes are divided into LTMemory ones, where the execution time of a new is linear with respect to the
size of the object allocated (and NOT with respect to its constructor!), and into VTMemory ones, where the
execution time of a new is variable. Therefore, inside a VTMemory region it is possible to have a local GC
collecting the unused objects of the region and a VTMemory can ask the underlying system for more memory
when there is not enough memory to perform a new. A LTMemory, on the other side, does not offer such
capabilities, since these cannot be guaranteed to run in linear time (with respect to object size).

Table 4: Creating a periodic Real-Time thread

Scheduler sched = javax.realtime.Scheduler.getDefaultScheduler();

ImportanceParameters prio = new ImportanceParameters(MAX_PRIORITY, 3);

PeriodicParameters pp = new PeriodicParameters(

new RelativeTime(0,0), // start it when it is released

new RelativeTime(100, 10),// period

new RelativeTime(30, 0), // cost

new RelativeTime(60, 0), // deadline

null, // no Overrun Handler

null); // no Miss Period Handler

MemoryParameters mp = new MemoryParameters(MemoryParameters.NO_MAX,

MemoryParameters.NO_MAX,

MemoryParameters.NO_MAX);

MemoryArea ma = new LTMemory(1024, 1024);

ProcessingGroupParameters gp = null;

RealtimeThread rt = new RealtimeThread(prio, pp, mp, ma, gp,

new Runnable() {

public void run() {

RealtimeThread t;

try {

t = (RealtimeThread) Thread.currentThread();

do {

/* Thread logic */

} while(t.waitForNextPeriod());

} catch (ClassCastException e) {}

}

});

rt.setScheduler(sched);

if (!rt.getScheduler().isFeasible())

throw new Exception("Not feasible");

rt.start(); // Release the thread

To summarise, there are three kinds of memory with respect to the GC- the GC’ed heap, the (unique) Im-
mortal memory region (not GC’ed and never deallocated), and the scoped memory regions (not GC’ed either
but deallocated automatically when its respective syntactic scope is exited). Currently, the following classes
(and subclasses) are available: HeapMemory, ImmortalMemory, VTMemory, LTMemory, VTPhysicalMemory,
LTPhysicalMemory and ImmortalPhysicalMemory. Since the immortal region is always available, objects
in it can reference objects on the heap. Since the GC’ed heap appears as an infinite memory where objects

Christos Kloukinas page 13 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Table 5: Assignment rules
Reference to Heap Reference to Immortal Reference to Scoped

Heap Yes Yes No
Immortal Yes Yes No

Scoped Yes Yes Yes, if same or higher scope
Local Variable Yes Yes Yes, if same or higher scope

are never deallocated (we cannot tell if an unreachable object has been collected) objects on the heap can
reference objects on the immortal region as well. Objects allocated in a scoped region can also reference
objects allocated in the heap or the immortal region. However, objects in the heap or in the immortal
region are not allowed to reference objects allocated in a scoped region. This is because a scoped region
can be exited and therefore deallocated at a moment which is unrelated to the lifetime of the objects in the
heap/immortal region. Such accesses are either checked against using static analysis during the compilation
of a Java file, or using run-time checks when the code has not been analysed or when we cannot analyse it.
These assignment rules for avoiding dangling pointers are summarised in Table 5.

In order to find out the size of a scoped region, one can use the SizeEstimator class and its method
void reserve(java.lang.Class c, int no_of_instances_of_c). By using additional blocks “{ ... }”
to break the code of a method into compartments where a certain object reference is used and setting it to
null at the end of its block, one can give extra hints to an optimising compiler, so that the latter can better
analyse the use of objects.

Finally, Real-Time threads can query the maximum preemption latency that the GC may cause them,
through RealtimeSystem.currentGC().getPreemptionLatency().

RTSJ: Physical Memory Access Physical memory access is possible through the classes VTPhysicalMemory,
LTPhysicalMemory & ImmortalPhysicalMemory, and through one of the classes RawMemoryAccess & RawMemoryFloatAcc
For example, the LTPhysicalMemory class accepts in its constructor the base address of the physical memory
block, its size, as well as its type (i.e., ALIGNED, BYTESWAP, DMA, SHARED). Since Java lacks a sizeof operator,
calculating a size for the physical memory (and mapping that to a Java object) is rather cumbersome. One
could again use a SizeEstimator object to estimate the size needed (from the standpoint of the Java object
which will be mapped to the physical memory region).

For this reason, one might be better off using the class RawMemoryAccess. Objects of this class model a
range of physical memory as a fixed sequence of bytes and offer methods for accessing the contents of the
region through offsets from the base address interpreted as byte, short, int or long data values or as arrays
of these types. Note that a raw memory region cannot contain references to Java objects, since this could
be used to defeat Java’s type checking.

In addition to the RawMemoryAccess class, one can also use the class RawMemoryFloatAccess to access
a raw memory area by float and double types or by arrays of these floating point types. However, note
that according to the RTSJ an implementation is only required to implement this class if and only if the
underlying JVM supports floating point data types.

4.3.3 RTSJ: Synchronisation and Resource Sharing

With respect to synchronisation, the RTSJ demands that conforming implementations enforce by default the
basic priority inheritance protocol (while also asking for an implementation to provide the priority ceiling
emulation one). One can set the priority inversion avoidance algorithm to be used by monitors either globally
or for a particular monitor. It also demands that threads waiting to enter a synchronised block should be
priority queue ordered and if more than one threads have the same priority then these must be queued in a
FIFO order.

However, synchronisation among Real-Time threads and normal ones is problematic, since the normal
threads may cause delays to the Real-Time ones due to the execution of the GC. In addition, the fact that
threads belonging to the NoHeapRealtimeThread class have a higher priority than the GC by definition,
makes the implementation of a priority inversion avoidance protocol impossible (since the other threads

Christos Kloukinas page 14 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

must have a lower priority than the GC and a priority inversion avoidance protocol can change this). For
this reason, the RTSJ provides three classes of wait-free queues, which can be used for synchronisation among
Real-Time threads and normal ones 3. The wait-free queues implement a unidirectional data flow, where
the Real-Time part (either the read or the write) is non-blocking and simply returns null (resp. false)
when the operation cannot be performed (i.e., on an empty, resp. full, queue). So, a WaitFreeWriteQueue
offers the possibility to a Real-Time thread to perform non-blocking write operations. If the operation is
impossible, the thread itself decides what action must be taken (e.g., overwrite a previous value, ignore the
new one, etc.). Since no locking is used for synchronisation, there is no need for using a priority inversion
avoidance protocol. If more than one Real-Time thread may write to a WaitFreeWriteQueue then they
must provide their own synchronisation. The side of the WaitFreeWriteQueue which corresponds to the
non-Real-Time part is synchronised as usually. That is, the read() method on a WaitFreeWriteQueue is
declared as a synchronized method and it blocks when the queue is empty.

4.3.4 RTSJ: Asynchronous Event Handling

The RTSJ allows the use of asynchronous event handling mechanisms. To do so, one uses the classes
AsyncEvent, which corresponds to the asynchronous event we want to handle, and AsyncEventHandler,
which corresponds to its handler. The latter is semantically equivalent to a Real-Time thread and its
method handleAsyncEvent() corresponds to the run() method of a thread (i.e., it is called when the
event happens). Handlers are bound to events using the addHandler() method of an AsyncEvent object.
An AsyncEvent object itself is bound to an external event using the method bindTo(String), where the
meaning of the string parameter is implementation dependent. Using the fire() method of an event, we
can force a handler to execute right-away. Events are data-less, that is, the fire() method does not pass
any data to the handler(s). A single event may be handled by multiple handlers and a single handler may
handle multiple events.

Handlers have scheduling parameters just like the Real-Time threads. In addition, one can use the
BoundAsyncEventHandler class to obtain handlers which are statically bound to particular threads and
thus avoid the extra latency of creating a new thread when an event occurs (at the extra cost of having an
extra thread present on the system). Handlers which are created with memory parameters corresponding to
a scoped region or to the immortal memory, act like a NoHeapRealtimeThread and thus can preempt the
GC.

Finally, there’s also the POSIXSignalHandler class if the underlying system supports Posix signals. One
can use this class to bound an asynchronous event handler to a particular Posix signal.

4.3.5 RTSJ: Asynchronous Transfer of Control

Acknowledging the fact that there are cases where things can go really wrong, the RTSJ introduced a
mechanism for asynchronous transfer of control. The idea behind it is similar to doing a longjmp in C/C++.
The mechanism implementing it is similar to normal Java exception handling, with the difference that
Java exceptions are synchronous. So, for a method to be interruptible by through an exception of type
AsynchronouslyInterruptedException (AIE), the method must declare this kind of exception in its throws
clause. If this is not the case, then the asynchronous exception is postponed (set to pending), until the
execution enters a method which has declared the possibility of such an exception. In addition, if the
execution is inside a synchronized block, then the asynchronous exception is again postponed until the
synchronised block has been exited. These two rules were set in order to ensure that: (i) methods which
were written without a priori knowledge of a possible interruption will not be interrupted, and (ii) that
shared objects will not be left in an inconsistent state.

A method which catches an AIE must call its method happened to figure out whether the current
AIE is the one it expected and propagate it if not. If it is indeed the AIE it expected, then it calls the
doInterruptible method, passing it as argument an object of a class which implements the interface
Interruptible, that will provide the handler for the exception.

One can also use the Timed class to program AIE’s which will be fired at the expiration of a timer. Once
the AIE from a timer is handled (i.e., its doInterruptible method exits) the timer is restarted for the

3See the references given at http://gee.cs.oswego.edu/dl/cpj/s2.4.html.

Christos Kloukinas page 15 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

amount of time given in the constructor of the Timed object, or the amount of time given to the most recent
invocation of the method resetTime.

AIE’s can be disabled, enabled, fired, propagated, handled through the doInterruptible and
queried through the isEnabled and happened methods.

Another requirement that the RTSJ introduced is that blocking methods in java.io.* must be prevented
to block indefinitely when they are invoked from a method with an AIE exception in its throw clause. In
such a case, a conforming implementation can choose among three different possible actions: (i) unblock the
blocked call, (ii) raise an IOException, or (iii) allow the call to complete normally if the implementation
determines that the call would eventually unblock.

RTSJ: Asynchronous Thread Termination Just like the asynchronous transfer of control, sometimes
it is needed to asynchronously terminate a thread altogether. However, being able to terminate a thread at
any moment is inherently unsafe, so such an action is only allowed through the use of the asynchronous event
handling and of the asynchronous transfer of control mechanisms. In other words, we can only terminate a
thread which has declared that it can be terminated (i.e., its method run declares AIE among the exceptions
which can be thrown during its execution), and the thread is not currently executing inside a synchronised
block.

Listing 9 shows how one can create periodic RealtimeThread, use an AsyncEventHandler, search for a
particular scheduler and use scoped memory regions.

4.4 Other Real-Time Java Proposals

Here is a list of some other proposals for Real-Time Java. Not all of them are finished specifications, or have
(at least) a reference implementation, but they are interesting enough to keep on your mind. The next move
on Real-Time Java may well come from them, or something similar, especially with respect to safety critical
systems.

• RTCE [15] & HIP [6] from the J-Consortium.

From J-Consortium’s web site:

The “High Integrity Profile” [6] is a subset of the “Real-Time Core Extensions” [15] Draft
Specification that is suitable for use in high integrity and safety critical applications. The
subset provides:

– Partitioning support for code of different criticality levels
– Determinism in memory usage, execution speed and functionality
– Very small footprint for the execution environment
– Constructs suitable for formal certification to the highest level

The RTCE and the HIP are well designed specifications but have a big disadvantage - they introduce
new keywords (thus it is impossible to reuse existing tools with them) and demand for a complete,
parallel class hierarchy of the base Java classes to be used by the Real-Time threads. The latter makes
it difficult to implement a conforming specification, since for every base class one has to implement the
base class itself plus its Real-Time counterpart. It also makes development of applications difficult,
since one has to keep track of the class hierarchy he is using in his methods and transform arguments
from one hierarchy to another (was that a java.lang.String or a realtime.String?. . .).

• Ravenscar-Java [9] inspired by the work of the Ada community on Ravenscar 4.

The idea behind Ravenscar-Java is that by constraining what an application can do, we can construct
tools which can automatically analyse and guarantee the safety of the applications and provide us with
efficient implementations.

4Ravenscar stands for Reliable Ada Verifiable Executive Needed for Scheduling Critical Applications in Real-Time.

Christos Kloukinas page 16 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

• JTRON [8] from Japan.

µITRON is a de facto industry standard specification in Japan for Real-Time kernels (eCos 5 provides
a certain level of conformance to µITRON and it is open-source). JTRON is the Java API to µITRON
and therefore can have a great impact in the future.

• Java 2 Platform, Micro Edition - J2ME.

Even though J2ME was created for embedded devices and not for Real-Time per se, it has a lot of
interesting characteristics. It is modular, permitting one to choose a particular profile among the ones
possible, and is designed for obtaining small footprint applications which will be running on systems
with limited resources.

For even more pointers to other Real-Time Java proposals, see Dr. Valérie Issarny’s slides [7].

5 Conclusions

Why use Java?
Because it’s:

• easier to write well structured programs in and easier to get them right, since it has built-in support
for monitors and threads (therefore, it’s easier to maintain your code and have it validated);

• rich on libraries;

• strongly-typed;

• impossible to corrupt the memory because of an out-of-bound array access;

• offered with automatic GC- no more memory leaks or corrupted heap due to using a free’ed heap
object;

• easier to have a highly optimising compiler, and, last but not least,

• so buzzword-compliant your boss would probably force you to use it in the very near future. . . ;-)

Yes, but Java for Real-Time programming?

• NASA used Lisp for the Deep-Space probe. . . ;

• others are already using Java for Real-Time systems (see GCJ’s page);

• new versions are out which make it easier to use with Real-Time systems;

• more and more tools are getting developed each minute;

• doing it with C/C++ is tedious, error-prone, difficult to maintain and to have it validated — Java
might help diminish the pain & help automate most of what is needed to be done. . .

Don’t forget: embedded Real-Time systems are becoming a huge market and the software in them is
replacing mechanisms which, until now, were implemented in hardware. The resulting complexity (both of
development and of maintainability) needs further support from tools to be tamed and this is the hope and
driving force behind Real-Time Java.

5http://sources.redhat.com/ecos

Christos Kloukinas page 17 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Bibliography

[1] Gregory Bollella. The Real-Time Specification for JavaTM. Slides available at http://www.opengroup.
org/rtforum/info/oct2000/slides/rtsj.pdf, October 2000.

[2] Gregory Bollella, Benjamin Brosgol, Peter Dibble, Steve Furr, James Gosling, David Hardin, Mark
Turnbull, Rudy Belliardi, Doug Locke, Scott Robbins, Pratik Solanki, and Dionisio de Niz. The Real-
Time Specification for JavaTM. The JavaTM Series. Addison-Wesley, 2000. Also available on-line
from http://www.rtj.org/rtsj-V1.0.pdf. The Reference Implementation (RI) and the Technology
Compatibility Kit (TCK) are available from TimeSys http://www.timesys.com.

[3] The Cygnus Native Interface for C++/Java Integration. Web page: http://gcc.gnu.org/java/
papers/cni/t1.html.

[4] GCJ: The GNU Compiler for the JavaTM Programming Language. Web page: http://gcc.gnu.org/
java/.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language Specification Second
Edition. The JavaTM Series. Addison-Wesley, 2000. Also available on-line from http://java.sun.
com/docs/books/jls.

[6] High Integrity Profile Task Group within WG1, RTJWG. High Integrity Profile. Technical report, J-
Consortium, 2002. The draft specification is available to members only at http://www.j-consortium.
org/hip. However, there is a presentation there which is publicly available.

[7] Valérie Issarny. Java et les systèmes temps réel. Available from http://info.in2p3.fr/page/
formation/infoG/DOCUMENTS%20TR-2002/JavaTR.pdf, October 2002.

[8] ITRON Committee. Yukikazu Nakamoto and Kazutoshi Usui (editors). JTRON2.0 SPECIFICATION.
TRON Association, Katsuta Building 5F, 3-39, Mita 1-chome, Minato-ku, Tokyo 108-0073, Japan,
September 1999. Available from http://www.assoc.tron.org/spec/jtron/jtron-200e.pdf 6

[9] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java: A High Integrity Profile for Real-
Time Java. In Proceedings of the Joint ACM Java Grande - ISCOPE 2002 Conference, pages 131–
140, November 2002. Also available from ftp://ftp.cs.york.ac.uk/papers/rtspapers/R:J.:Kwon:
2002.pdf.

[10] Doug Lea. The JSR-133 Cookbook. Web page available at http://gee.cs.oswego.edu/dl/jmm/
cookbook.html, February 2003 (last visited). Discusses what the Java memory model means for com-
piler writers.

[11] Sheng Liang. JavaTM Native Interface: Programmer’s Guide and Specification. The JavaTM Series.
Addison-Wesley, 1999. Also available on-line from http://java.sun.com/docs/books/jni.

[12] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification Second Edition. The
JavaTM Series. Addison-Wesley, 1999. Also available on-line from http://java.sun.com/docs/books/
vmspec.

[13] The Open Group. The Single UNIX Specification, Version 2: Threads, 1997. Available online at
http://www.unix-systems.org/single_unix_specification_v2/xsh/threads.html.

[14] Bill Pugh. The Java Memory Model. Web page available at http://www.cs.umd.edu/~pugh/java/
memoryModel, February 2003 (last visited). The latest proposal is at http://www.cs.umd.edu/~pugh/
java/memoryModel/newest.pdf. See also [10].

6TRON is an abbreviation of “The Real-time Operating System Nucleus.”; BTRON is of “Business TRON.”; CTRON is of
“Communication and Central TRON.”; ITRON is of “Industrial TRON.”; µITRON is of “Micro ITRON.”; JTRON is of “Java
API for TRON.” The µITRON Real-Time kernel specification is a de facto industry standard in Japan.

Christos Kloukinas page 18 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

[15] Real-Time Java Working Group. Real-Time Core Extensions. Technical report, J-Consortium, Septem-
ber 2000. Available from http://www.j-consortium.org/rtjwg/rtce.1.0.14.pdf.

[16] Why are Thread.stop, Thread.suspend and Thread.resume Deprecated? Web page: http://java.sun.
com/j2se/1.4.1/docs/guide/misc/threadPrimitiveDeprecation.html.

Christos Kloukinas page 19 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

A Listings

Listing 2: Using threads in Java

/* 1 */ class SharedObject {

/* 2 */ boolean isInitialised; // false by default

/* 3 */ }

/* 4 */

/* 5 */ class MyThread extends Thread {

/* 6 */ private SharedObject myObject;

/* 7 */ private Thread myParent;

/* 8 */

/* 9 */ public MyThread(SharedObject anObject) {

/* 10 */ myObject = anObject;

/* 11 */ myParent = Thread.currentThread();

/* 12 */ }

/* 13 */

/* 14 */ public void run() {

/* 15 */ // This is the main body of the thread

/* 16 */ System.err.println(this.getName() + " Started");

/* 17 */ synchronized(myObject) {

/* 18 */ while (! myObject.isInitialised) {

/* 19 */ try {

/* 20 */ myObject.wait(); // Wait for initialisation to end.

/* 21 */ } catch (InterruptedException e) { }

/* 22 */ }

/* 23 */ }

/* 24 */ System.err.println(this.getName() + " my priority is " +

/* 25 */ this.getPriority());

/* 26 */ System.err.println(this.getName() + " My parent is " +

/* 27 */ myParent.getName());

/* 28 */ return;

/* 29 */ }

/* 30 */ }

/* 31 */

/* 32 */ class Initialise {

/* 33 */ public static void main(String[] argv) {

/* 34 */ Thread.currentThread().setName("main:");

/* 35 */ SharedObject sharedObject = new SharedObject();

/* 36 */ MyThread threadOne = new MyThread(sharedObject);

/* 37 */ MyThread threadTwo = new MyThread(sharedObject);

/* 38 */ threadOne.setName("\tthreadOne:");

/* 39 */ threadOne.setPriority(java.lang.Thread.MAX_PRIORITY - 0);

/* 40 */ threadTwo.setName("\t\tthreadTwo:");

/* 41 */ threadTwo.setPriority(java.lang.Thread.MAX_PRIORITY - 1);

/* 42 */ threadOne.start();

/* 43 */ threadTwo.start();

/* 44 */ System.err.println(Thread.currentThread().getName() +

/* 45 */ " Finished initialisation - my priority is " +

/* 46 */ Thread.currentThread().getPriority());

/* 47 */ synchronized(sharedObject) {// End of initialisation.

/* 48 */ sharedObject.isInitialised = true;

/* 49 */ sharedObject.notifyAll();

/* 50 */ }

/* 51 */ try {

/* 52 */ threadOne.join();

/* 53 */ } catch (InterruptedException ie) {

/* 54 */ System.err.println("Interrupted join on threadOne: " + ie);

Christos Kloukinas page 20 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/* 55 */ }

/* 56 */ try {

/* 57 */ threadTwo.join();

/* 58 */ } catch (InterruptedException ie) {

/* 59 */ System.err.println("Interrupted join on threadTwo: " + ie);

/* 60 */ }

/* 61 */ }

/* 62 */ }

Listing 3: Using threads in Java through the Runnable interface

/* 1 */ class SharedObject {

/* 2 */ boolean isInitialised; // false by default

/* 3 */ }

/* 4 */

/* 5 */ class MyThread implements Runnable {

/* 6 */ private SharedObject myObject;

/* 7 */ private Thread myParent;

/* 8 */

/* 9 */ public MyThread(SharedObject anObject) {

/* 10 */ myObject = anObject;

/* 11 */ myParent = Thread.currentThread();

/* 12 */ }

/* 13 */

/* 14 */ public void run() { // This is the main body of the thread

/* 15 */ Thread myself = Thread.currentThread();

/* 16 */ System.err.println(myself.getName() + " Started");

/* 17 */ synchronized(myObject) {

/* 18 */ while (! myObject.isInitialised) {

/* 19 */ try {

/* 20 */ myObject.wait(); // Wait for initialisation to end.

/* 21 */ } catch (InterruptedException e) { }

/* 22 */ }

/* 23 */ }

/* 24 */ System.err.println(myself.getName() + " my priority is " +

/* 25 */ myself.getPriority());

/* 26 */ System.err.println(myself.getName() + " My parent is " +

/* 27 */ myParent.getName());

/* 28 */ return;

/* 29 */ }

/* 30 */ }

/* 31 */

/* 32 */ class Initialise {

/* 33 */ public static void main(String[] argv) {

/* 34 */ Thread.currentThread().setName("main:");

/* 35 */ SharedObject sharedObject = new SharedObject();

/* 36 */ MyThread threadOne = new MyThread(sharedObject);

/* 37 */ MyThread threadTwo = new MyThread(sharedObject);

/* 38 */ ThreadGroup myGroup = Thread.currentThread().getThreadGroup();

/* 39 */ long stackSize = 1L; // Just 1 Byte...

/* 40 */ Thread tOne = new Thread(myGroup, (Runnable) threadOne,

/* 41 */ "\tthreadOne:", stackSize);

/* 42 */ Thread tTwo = new Thread(myGroup, (Runnable) threadTwo,

/* 43 */ "\t\tthreadTwo:", stackSize);

/* 44 */ tOne.setPriority(java.lang.Thread.MAX_PRIORITY - 0);

/* 45 */ tTwo.setPriority(java.lang.Thread.MAX_PRIORITY - 1);

/* 46 */ tOne.start();

/* 47 */ tTwo.start();

/* 48 */ System.err.println(Thread.currentThread().getName() +

Christos Kloukinas page 21 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/* 49 */ " Finished initialisation - my priority is " +

/* 50 */ Thread.currentThread().getPriority());

/* 51 */ synchronized(sharedObject) {// End of initialisation.

/* 52 */ sharedObject.isInitialised = true;

/* 53 */ sharedObject.notifyAll();

/* 54 */ }

/* 55 */ try {

/* 56 */ tOne.join();

/* 57 */ } catch (InterruptedException ie) {

/* 58 */ System.err.println("Interrupted join on threadOne: " + ie);

/* 59 */ }

/* 60 */ try {

/* 61 */ tTwo.join();

/* 62 */ } catch (InterruptedException ie) {

/* 63 */ System.err.println("Interrupted join on threadTwo: " + ie);

/* 64 */ }

/* 65 */ }

/* 66 */ }

Listing 4: Interrupting threads in Java

/* 1 */ class ERR {

/* 2 */ static public void println(String msg){

/* 3 */ System.err.println(Thread.currentThread().toString() + ": " + msg);

/* 4 */ }

/* 5 */ }

/* 6 */ class MyThread extends Thread {

/* 7 */ Thread parent;

/* 8 */ public MyThread() {parent = Thread.currentThread();}

/* 9 */ public void run() {

/* 10 */ ERR.println("Hello");

/* 11 */ try {this.sleep(2);} catch (InterruptedException ie) {}

/* 12 */ parent.interrupt();

/* 13 */ }

/* 14 */ }

/* 15 */ class Main {

/* 16 */ public static void main(String[] argv) throws InterruptedException {

/* 17 */ MyThread aThread = new MyThread();

/* 18 */ ERR.println("this is main");

/* 19 */ aThread.start(); // calls run()

/* 20 */ try {

/* 21 */ aThread.join();

/* 22 */ if (Thread.currentThread().isInterrupted()) {

/* 23 */ ERR.println("Have been interrupted");

/* 24 */ throw new InterruptedException("Suicide...");

/* 25 */ }

/* 26 */ } catch (InterruptedException ie) {

/* 27 */ ERR.println("Un-joinable:" + ie);

/* 28 */ throw ie;

/* 29 */ } finally {

/* 30 */ ERR.println("Bye");

/* 31 */ }

/* 32 */ ERR.println("Never printed...");

/* 33 */ }

/* 34 */ }

Christos Kloukinas page 22 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Listing 5: Using timers in Java

/* 1 */

/* 2 */ import java.lang.*;

/* 3 */ import java.util.*;

/* 4 */

/* 5 */ class MyTimerTask extends TimerTask {

/* 6 */ private int MAX_TARDINESS = 15;

/* 7 */ private String myName = null;

/* 8 */

/* 9 */ public MyTimerTask(String aName) {myName=aName;}

/* 10 */

/* 11 */ public void run() {

/* 12 */ // This is the main body of the thread

/* 13 */ System.err.println("\tTimerTask"+myName+": Started");

/* 14 */ if (System.currentTimeMillis() - scheduledExecutionTime() >= MAX_TARDINESS)

/* 15 */ return; // Too late; skip this execution.

/* 16 */ // Perform the task

/* 17 */ System.err.println("\t\tTimerTask"+myName+": running @ " +

/* 18 */ System.currentTimeMillis());

/* 19 */ return;

/* 20 */ }

/* 21 */ }

/* 22 */

/* 23 */ class Initialise {

/* 24 */ public static void main(String[] argv) {

/* 25 */ Thread.currentThread().setName("main:");

/* 26 */ MyTimerTask aTimerTask = new MyTimerTask(" one ");

/* 27 */ MyTimerTask bTimerTask = new MyTimerTask(" two ");

/* 28 */ Timer aTimer = new Timer(false); // Not a daemon timer

/* 29 */

/* 30 */ // Start it after 10 milliseconds, with a period of 30 milliseconds

/* 31 */ aTimer.scheduleAtFixedRate(aTimerTask, 10L, 20L);

/* 32 */

/* 33 */ // Start it after 30 milliseconds, with a period of 30 milliseconds

/* 34 */ aTimer.scheduleAtFixedRate(bTimerTask, 30L, 30L);

/* 35 */

/* 36 */ try {

/* 37 */ Thread.currentThread().sleep(100L);

/* 38 */ } catch (InterruptedException ie) { }

/* 39 */

/* 40 */ bTimerTask.cancel();

/* 41 */ // The following is wrong - we cannot re-schedule a canceled task.

/* 42 */ // aTimer.scheduleAtFixedRate(bTimerTask, 30L, 30L);

/* 43 */

/* 44 */ try {

/* 45 */ Thread.currentThread().sleep(100L);

/* 46 */ } catch (InterruptedException ie) { }

/* 47 */

/* 48 */ // Cancel all timer tasks

/* 49 */ aTimer.cancel();

/* 50 */

/* 51 */

/* 52 */

/* 53 */ return;

/* 54 */ }

/* 55 */ }

Christos Kloukinas page 23 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Listing 6: Using JNI/CNI— the Java part

/* 1 */ class HelloWorld {

/* 2 */ private native void print();

/* 3 */ static {

/* 4 */ System.loadLibrary("HelloWorld");

/* 5 */ }

/* 6 */ public static void main(String[] args) {

/* 7 */ Thread.currentThread().setName("The Main from Java");

/* 8 */ new HelloWorld().print();

/* 9 */ }

/* 10 */ }

Listing 7: Using JNI— the C part

/* 1 */ #include <jni.h>

/* 2 */ #include <stdio.h>

/* 3 */ #include "HelloWorld.h"

/* 4 */

/* 5 */ JNIEXPORT void JNICALL

/* 6 */ Java_HelloWorld_print(JNIEnv *env, jobject obj)

/* 7 */ {

/* 8 */ jstring Unicode_str;

/* 9 */ const jbyte *UTF_str;

/* 10 */ jclass class;

/* 11 */ jmethodID method_id;

/* 12 */ jobject this_thread;

/* 13 */

/* 14 */ fprintf(stderr,"Starting Java_HelloWorld_print\n");

/* 15 */

/* 16 */ /*

/* 17 */ In C++ the following call would have been written:

/* 18 */

/* 19 */ class = env->FindClass("java/lang/Thread");

/* 20 */ */

/* 21 */ class = (*env)->FindClass(env, "java/lang/Thread");

/* 22 */ if (NULL == class) {

/* 23 */ fprintf(stderr,"Could not find class java.lang.Thread\n");

/* 24 */ return;

/* 25 */ }

/* 26 */

/* 27 */ method_id = (*env)->GetStaticMethodID(env, class,

/* 28 */ "currentThread", "()Ljava/lang/Thread;");

/* 29 */ if (NULL == method_id) {

/* 30 */ fprintf(stderr,

/* 31 */ "Could not find static method currentThread of java.lang.Thread\n");

/* 32 */ return;

/* 33 */ }

/* 34 */

/* 35 */ this_thread = (*env)->CallStaticObjectMethod(env, class, method_id);

/* 36 */ if (NULL == this_thread) {

/* 37 */ fprintf(stderr,"Could not get the currentThread\n");

/* 38 */ return;

/* 39 */ }

/* 40 */

/* 41 */ class = (*env)->GetObjectClass(env, this_thread);

/* 42 */ if (NULL == class) {

/* 43 */ fprintf(stderr,"Could not find class java.lang.Thread\n");

/* 44 */ return;

Christos Kloukinas page 24 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/* 45 */ }

/* 46 */

/* 47 */ method_id = (*env)->GetMethodID(env, class,

/* 48 */ "toString", "()Ljava/lang/String;");

/* 49 */ if (NULL == method_id) {

/* 50 */ fprintf(stderr,"Could not find method toString of java.lang.Thread\n");

/* 51 */ return;

/* 52 */ }

/* 53 */

/* 54 */ Unicode_str = (*env)->CallObjectMethod(env, this_thread, method_id);

/* 55 */ if (NULL == Unicode_str) {

/* 56 */ fprintf(stderr,"Did not get the name of the current thread\n");

/* 57 */ return;

/* 58 */ }

/* 59 */

/* 60 */ UTF_str = (*env)->GetStringUTFChars(env, Unicode_str, NULL);

/* 61 */ if (NULL == UTF_str) {

/* 62 */ return; /* OutOfMemoryError already thrown */

/* 63 */ }

/* 64 */

/* 65 */ /*

/* 66 */ * Here I *KNOW* that the UTF string returned contains only 7-bit ASCII

/* 67 */ * characters, that’s why I’m passing it to printf.

/* 68 */ *

/* 69 */ * When this is *not* the case, see section 8.2 of the JNI Guide...

/* 70 */ */

/* 71 */ printf("Thread \"%s\" says using JNI: Hello World!\n", UTF_str);

/* 72 */

/* 73 */ /* Collecting our garbage to avoid a memory leak */

/* 74 */ (*env)->ReleaseStringUTFChars(env, Unicode_str, UTF_str);

/* 75 */ return;

/* 76 */ }

Christos Kloukinas page 25 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

Listing 8: Using CNI— the C++ part

/* 1 */ // This file was created by ‘gcjh -stubs’. -*- c++ -*-

/* 2 */ //

/* 3 */ // This file is intended to give you a head start on implementing native

/* 4 */ // methods using CNI.

/* 5 */ // Be aware: running ‘gcjh -stubs ’ once more for this class may

/* 6 */ // overwrite any edits you have made to this file.

/* 7 */

/* 8 */ #include <HelloWorld.h>

/* 9 */ #include <gcj/cni.h>

/* 10 */ #include <java/lang/UnsupportedOperationException.h>

/* 11 */

/* 12 */ // Includes I have added

/* 13 */ #include <java/lang/Thread.h>

/* 14 */ #include <java/lang/System.h>

/* 15 */ #include <java/io/PrintStream.h>

/* 16 */

/* 17 */ void

/* 18 */ HelloWorld::print ()

/* 19 */ {

/* 20 */ /* Original automatically created stub code was:

/* 21 */

/* 22 */ throw new ::java::lang::UnsupportedOperationException

/* 23 */ (JvNewStringLatin1 ("HelloWorld::print () not implemented"));

/* 24 */

/* 25 */ */

/* 26 */ java::lang::System::err->print

/* 27 */ (JvNewStringLatin1 ("Thread \""));

/* 28 */ java::lang::System::err->print

/* 29 */ ((java::lang::Thread::currentThread())->toString());

/* 30 */ java::lang::System::err->println

/* 31 */ (JvNewStringLatin1 ("\" says using CNI: Hello World!"));

/* 32 */ }

Listing 9: Using RTSJ

/* 1 */ /*

/* 2 */

/* 3 */ RTSJ_HOME=/import/linux/soft/src/rtsj-ri/refimp-1.0

/* 4 */ javac -bootclasspath ${RTSJ_HOME}/lib/foundation.jar rtsj-ex.java

/* 5 */

/* 6 */ (cd ${RTSJ_HOME}/pthreadrt ; test -f libpthreadrt.so ln -s libpthreadrt.so.2.0 libpthreadrt.so)

/* 7 */

/* 8 */ LD_LIBRARY_PATH=${RTSJ_HOME}/pthreadrt:${LD_LIBRARY_PATH}

/* 9 */

/* 10 */ I don’t have an EDF scheduler but I can *fake* one

/* 11 */

/* 12 */ ${RTSJ_HOME}/bin/tjvm \

/* 13 */ -Xbootclasspath=${RTSJ_HOME}/lib/foundation.jar \

/* 14 */ -Djava.class.path=‘pwd‘ \

/* 15 */ -Djavax.realtime.scheduler.EDF=javax.realtime.PriorityScheduler \

/* 16 */ SchedExample

/* 17 */

/* 18 */ One would have normally run this as:

/* 19 */

/* 20 */ ${RTSJ_HOME}/bin/tjvm \

/* 21 */ -Xbootclasspath=${RTSJ_HOME}/lib/foundation.jar \

/* 22 */ -Djava.class.path=‘pwd‘ \

Christos Kloukinas page 26 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/* 23 */ SchedExample

/* 24 */

/* 25 */ */

/* 26 */

/* 27 */ import java.lang.*;

/* 28 */ import java.util.*;

/* 29 */ import javax.realtime.*;

/* 30 */

/* 31 */ class MyRunnable implements Runnable {

/* 32 */ public static void remaining(String s, MemoryArea m) {

/* 33 */ System.err.println("\t"+s+":"+m

/* 34 */ +" Size="+m.size()

/* 35 */ +" Left="+m.memoryRemaining()

/* 36 */ +" ");

/* 37 */ }

/* 38 */

/* 39 */ public void run() {

/* 40 */ RealtimeThread I = null;

/* 41 */ try {

/* 42 */ I = (RealtimeThread) Thread.currentThread();

/* 43 */ } catch (ClassCastException e) {

/* 44 */ System.err.println(e);

/* 45 */ }

/* 46 */

/* 47 */ System.err.println(I);

/* 48 */

/* 49 */ MemoryArea memArea = null;

/* 50 */

/* 51 */ int stackDepth = javax.realtime.RealtimeThread.getMemoryAreaStackDepth();

/* 52 */

/* 53 */ switch (stackDepth) {

/* 54 */ case 3:

/* 55 */ memArea = javax.realtime.RealtimeThread.getOuterMemoryArea(stackDepth-3);

/* 56 */ remaining("Heap ",memArea);

/* 57 */ /* fall through */

/* 58 */ case 2:

/* 59 */ memArea = javax.realtime.RealtimeThread.getOuterMemoryArea(stackDepth-2);

/* 60 */ remaining("oldMem ", memArea);

/* 61 */ /* fall through */

/* 62 */ case 1:

/* 63 */ memArea = javax.realtime.RealtimeThread.getOuterMemoryArea(stackDepth-1);

/* 64 */ remaining("newMem ", memArea);

/* 65 */

/* 66 */ System.err.print(’\n’);

/* 67 */ }

/* 68 */ }

/* 69 */ }

/* 70 */

/* 71 */ class SchedExample {

/* 72 */

/* 73 */ static protected LTMemory anewMem = null;

/* 74 */ static protected Runnable anewRun = null;

/* 75 */

/* 76 */ public static Scheduler findSched(String policy) {

/* 77 */ String className = System.getProperty("javax.realtime.scheduler."+policy);

/* 78 */ Class clazz;

/* 79 */ try {

/* 80 */ if (null != className && null != (clazz = Class.forName(className))) {

Christos Kloukinas page 27 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/* 81 */ System.err.println("findSched: Found " + policy);

/* 82 */ return (Scheduler) clazz.getMethod("instance",null).invoke(null,null);

/* 83 */ } else {

/* 84 */ System.err.println("findSched: Could not find " + policy);

/* 85 */ }

/* 86 */ } catch (Exception e) {

/* 87 */ System.err.println("findSched: " + e);

/* 88 */ }

/* 89 */ return null;

/* 90 */ }

/* 91 */

/* 92 */ public static void main(String[] args) throws Exception {

/* 93 */ Scheduler sched = findSched("EDF");

/* 94 */ if (null != sched) {

/* 95 */ System.err.println("main: Found EDF scheduling policy");

/* 96 */ } else {

/* 97 */ System.err.println("main: Could not find EDF scheduling policy"

/* 98 */ + " - Using default");

/* 99 */ // What are the system properties anyway?

/*100*/ System.getProperties().list(System.err);

/*101*/ System.err.println("-- end of listing properties --");

/*102*/ sched = javax.realtime.Scheduler.getDefaultScheduler();

/*103*/ }

/*104*/ System.err.println("main: Your scheduling policy’s *real* name is "

/*105*/ + sched.getPolicyName());

/*106*/

/*107*/ AsyncEventHandler missHandler = new AsyncEventHandler(new

/*108*/ Runnable ()

/*109*/ {

/*110*/ public void run() {

/*111*/ System.err.println("Missed a period - exiting");

/*112*/ System.exit(1);

/*113*/ }

/*114*/ }

/*115*/);

/*116*/

/*117*/ PeriodicParameters pp = new

/*118*/ PeriodicParameters(

/*119*/ new RelativeTime(0,0),//when released

/*120*/ new RelativeTime(400, 0), // period

/*121*/ new RelativeTime(30, 0), // cost

/*122*/ new RelativeTime(60, 0), // deadline

/*123*/ null, // no Overrun Handler

/*124*/ missHandler); // the Miss Period Handler

/*125*/ ImportanceParameters prio = new

/*126*/ ImportanceParameters(3, 3);

/*127*/ MemoryParameters mp = new

/*128*/ MemoryParameters(MemoryParameters.NO_MAX,MemoryParameters.NO_MAX);

/*129*/

/*130*/ final LTMemory oldMem = new LTMemory(6*1024, 6*1024);

/*131*/

/*132*/ ProcessingGroupParameters gp = null;

/*133*/

/*134*/ final Class argTypes[] = {long.class,// this is the type of a primitive long

/*135*/ long.class};

/*136*/ // Find the constructor of the LTMemory class which takes two longs as

/*137*/ // arguments.

/*138*/ final java.lang.reflect.Constructor ltmemconstructor =

Christos Kloukinas page 28 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/*139*/ LTMemory.class.getConstructor(argTypes);

/*140*/ // You could also have used the Class.forName(String) to get the class:

/*141*/ // final java.lang.reflect.Constructor ltmemconstructor =

/*142*/ // Class.forName("javax.realtime.LTMemory").getConstructor(argTypes);

/*143*/

/*144*/ // I need an array of *Objects* to pass to the constructor invocation,

/*145*/ // so I must use Long, instead of long.

/*146*/ final Object minMax[] = { new Long(4*1024L), new Long(4*1024L) };

/*147*/

/*148*/ RealtimeThread rt = new

/*149*/ RealtimeThread(prio, pp, mp, oldMem, gp, new Runnable ()

/*150*/ {

/*151*/ public void comp(final String s1, final String s2) {

/*152*/ RealtimeThread I = null;

/*153*/ try {

/*154*/ I = (RealtimeThread) Thread.currentThread();

/*155*/ } catch (ClassCastException e) {

/*156*/ System.err.println(e);

/*157*/ }

/*158*/ if (I.getCurrentMemoryArea() != oldMem)

/*159*/ System.err.println("Should never happen");

/*160*/

/*161*/ try {

/*162*/ // Get a new instance using the constructor & args you have

/*163*/ // precalculated.

/*164*/ if (null == anewMem)

/*165*/ anewMem = (LTMemory)oldMem.newInstance(ltmemconstructor, minMax);

/*166*/ }

/*167*/ catch (java.lang.IllegalAccessException e){

/*168*/ System.err.println(e);

/*169*/ System.exit(20);

/*170*/ }

/*171*/ catch (java.lang.InstantiationException e){

/*172*/ System.err.println(e);

/*173*/ System.exit(21);

/*174*/ }

/*175*/ catch (Exception e) {

/*176*/ System.err.println(e);

/*177*/ System.exit(22);

/*178*/ }

/*179*/ final LTMemory newMem = anewMem;

/*180*/

/*181*/ // newRun *runs in* newMem, but is *allocated* on oldMem.

/*182*/ try {

/*183*/ // Get a new instance using the constructor & args you have

/*184*/ // precalculated.

/*185*/ if (null == anewRun)

/*186*/ anewRun = (MyRunnable) oldMem.newInstance(MyRunnable.class);

/*187*/ }

/*188*/ catch (java.lang.IllegalAccessException e){

/*189*/ System.err.println(e);

/*190*/ System.exit(30);

/*191*/ }

/*192*/ catch (java.lang.InstantiationException e){

/*193*/ System.err.println(e);

/*194*/ System.exit(31);

/*195*/ }

/*196*/ catch (Exception e) {

Christos Kloukinas page 29 out of 30

JavaTM & Real-Time École IN2P3 d’informatique: Temps Réel

/*197*/ System.err.println(e);

/*198*/ System.exit(32);

/*199*/ }

/*200*/ final Runnable newRun = anewRun;

/*201*/

/*202*/ try {

/*203*/ newMem.joinAndEnter(newRun);

/*204*/ } catch (InterruptedException ie){

/*205*/ System.err.println(ie);

/*206*/ }

/*207*/ }

/*208*/

/*209*/ public void run() {

/*210*/ try {

/*211*/ RealtimeThread I =

/*212*/ (RealtimeThread) Thread.currentThread();

/*213*/ MemoryArea myMem =

/*214*/ I.getCurrentMemoryArea();

/*215*/ if (oldMem != myMem)

/*216*/ System.exit(10);

/*217*/

/*218*/ String first = new String(I + ": Started");

/*219*/ String next = new String(I + ": Running");

/*220*/

/*221*/ System.err.println(I+":");

/*222*/ MyRunnable.remaining("oldMem ", oldMem);

/*223*/ System.err.print(’\n’);

/*224*/

/*225*/ comp("1-Not using the right scope", first);

/*226*/

/*227*/ java.lang.Runtime.getRuntime().traceInstructions(true);

/*228*/ java.lang.Runtime.getRuntime().traceMethodCalls(true);

/*229*/

/*230*/ do {

/*231*/

/*232*/ comp("2-Not using the right scope", next);

/*233*/

/*234*/ } while(I.waitForNextPeriod());

/*235*/ } catch (ClassCastException e) {

/*236*/ System.err.println(e);

/*237*/ }

/*238*/ }

/*239*/ }

/*240*/);

/*241*/

/*242*/ rt.setScheduler(sched);

/*243*/ if (!rt.getScheduler().isFeasible())

/*244*/ throw new Exception("Not feasible");

/*245*/

/*246*/ System.err.println("\n\t\t\t\t\tmain is : "+Thread.currentThread()+’\n’);

/*247*/

/*248*/ rt.start(); // Release the thread

/*249*/ }

/*250*/ }

Christos Kloukinas page 30 out of 30

