
CHORD SEQUENCE PATTERNS IN OWL

Jens Wissmann
FZI Research Center for
Information Technologies,
Karlsruhe, Germany

jens.wissmann@fzi.de

Tillman Weyde
City University London,
London, United Kingdom
t.e.weyde@city.ac.uk

Darrell Conklin
Department of Computer Science and AI

Universidad del País Vasco,
San Sebastián, Spain

IKERBASQUE, Basque Foundation for Science
darrell_conklin@ehu.es

ABSTRACT

Chord symbols and progressions are a common way to de-
scribe musical harmony. In this paper we present SEQ, a
pattern representation using the Web Ontology Language
OWLDL and its application to modelling chord sequences.SEQ provides a logical representation of order informa-
tion, which is not available directly in OWL DL, together
with an intuitive notation. It therefore allows the use of
OWL reasoners for tasks such as classification of sequences
by patterns and determining subsumption relationships be-
tween the patterns. The SEQ representation is used to
express distinctive pattern obtained using data mining of
multiple viewpoints of chord sequences.

1. INTRODUCTION

The Semantic Web is an effort to augment the conventional
Web with explicit machine-processable semantic metadata
to serve as a backbone for a variety of automated content
processing and retrieval task [1, 2]. In this context, sev-
eral techniques for the logical description and querying of
web data have been developed. Particularly, modelling of
knowledge in web ontologies using the Description Logic
OWL DL [3] enables automatic reasoning. However, these
techniques have been developed with the focus on termino-
logical metadata and the use of these techniques to reason
on structured objects such as found in music representation
is still in its beginnings.
For our approach, we chose chord sequences as a start-

ing point as these are a popular representation and have in-
creasingly gained research interest [4, 5]. They are also at a
convenient and powerful level of musical abstraction. For
example, within the “Music Ontology" effort patterns have
been learned from chord sequences available in the Seman-
tic Web data format RDF [6, 7]. The patterns themselves
however have not been expressed with Semantic Web tech-
niques. Indeed, neither RDF nor OWL offer ad hoc support
for representing sequential structures.
We have developed a generic representation for sequen-

tial patterns in OWL DL that we call SEQ, extending the
Copyright: ©2010 Wissmann et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author and

source are credited.

work of [8], and applied it to chord sequence representa-
tion. Notation and expressivity are similar to regular ex-
pressions, and allow the expression of different levels of
abstraction. Several reasoning tasks on such a representa-
tion can be solved using readily available OWL reasoners.
In a web retrieval scenario, for example, instance checking
can be used to find chord sequences that match or contain a
search pattern. More interestingly, subsumption checking
analyses pattern inclusion.
To demonstrate how the SEQ representation can be used

to enrich the results of pattern discovery, we translated dis-
tinctive chord patterns, which were learned from a corpus
using a statistical learning approach in [9], into SEQ and
used an OWL reasoner for the calculation of subsumption
relations and instance retrieval.

2. MODELLING KNOWLEDGE IN OWL DL

OWL DL belongs to the Description Logic (DL) family of
knowledge representation languages [10]. DLs are popular
for describing the knowledge of a domain of interest by
formalising its terminology using
• instances i , j, . . .,
• concepts C, D, . . . and
• properties R, S, . . .
Most DLs correspond to fragments of first order logic

such that instances, concepts and properties correspond to
constants, unary predicates and binary predicates.
An ontology is a set of axioms that define relationships

between these terms. The part of the ontology that asserts
facts about instances is called the ABox, while the part that
defines the terminology is called TBox. From a first order
logic perspective, ABox axioms assert predicates on con-
stants while TBox axioms describe predicate structures on
variables. Basic forms of terminological axioms are
• concept subsumption (C ⊑ D) and
• equivalence (C ≡ D).

Basic forms of assertional axioms are
• type assertions (i ∃C) and
• property assertions (R(i, j)).
Here C and D can stand for atomic concepts but can

also be composite expressions as we will further illustrate.
In this paper we mainly focus on modelling structural

aspects of chord sequences, but will consider some exam-
ple concept expressions from the domain of music meta-
data as DL syntax was originally introduced for describing
terminologies and it is therefore most intuitive to describe

17

●α ●

W

●

X

●

Y

●

Z

●ω
followedBy hasNext

hasContent

hasNext

hasContent

followedBy

hasContent

followedBy

hasContent

Figure 1: Structure of an example sequential pattern

the relationships between words. A motivation for this is
also to highlight the possibilities of DLs for reasoning on
musical structures and musical metadata within one single
logical framework. For example, consider the TBox

Musician ≡ ∃performed.Music ⊔ ∃wrote.Music
Composer ≡ ∃wrote.Music

These axioms define a musician as somebody who per-
formed or wrote music, and a composer to be someone who
wrote music. Here boolean constructs and property restric-
tions are used to form expressions. DLs provide boolean
constructors ¬C, C ⊓ D, C ⊔ D. As DLs have first order
logic semantics we can think of these as complement, in-
tersection and union of sets (of instances). Further, DLs
allow to quantify over properties (∃R .C, ∀R .C, ∃=nR .C,∃≤nR .C, ∃≥nR .C), e.g. stating that for an instance that is
a Composer there exists a property wrote with the range
Music. OWL Reasoners provide certain standard reason-
ing services. For example, by subsumption reasoning on
the TBox a reasoner can be infer that all composers are
necessarily musicians (Composer ⊑ Musician). In fact all
subsumption problems in DLs are decidable, i.e. we can
do this for any two concept descriptions. So the main chal-
lenge is to capture the interesting aspects of a terminology
as DL axioms, whereas the reasoning is done automati-
cally.
A further reasoner task is classification of an ABox with

respect to TBox concepts. Consider the facts

wrote(mozart,magic_flute),
wrote(shakespeare,hamlet),

magic_flute ∃Music,
shakespeare ∃∀wrote.Literature

Here, for example, Mozart will be classified as composer
and musician. Shakespeare will not be classified as musi-
cian as he just wrote literature.
Additional DL constructs exist that allow to assert sub-

property relationship, inverse property relationship and char-
acteristics of properties such as being functional, transitive,
reflexive, irreflexive, symmetric or asymmetric. We refer
the reader to [10] and [11] for a more detailed discussion
of DLs.

3. MODELLING SEQUENCES IN OWL

The wish to model sequences arises naturally in the music
domain, given its temporal nature. Unfortunately, there are
no native constructs within OWL DL to express sequence
patterns. Drummond et al. [8] proposed to use a linked list
approach. We extended this approach and developed SEQ,
an ontological representation of sequence patterns.
In the following we describe the axiomatisation of basicSEQ patterns and give examples. The axiomatization of

the linked list structure follows the ideas of Drummond et
al. [8]. One difference is that we introduce an initial com-
ponent because this is crucial for the behaviour of pattern
subsumption and for the creation of more complex pattern
constructs. Further we introduce a notation to express se-
quences in a more intuitive (yet formal) way.
The core structure of a SEQ pattern is similar to a linked

list. Figure 1 shows an example. Components of patterns
are linked by solid dots. Each component can be associated
with linking and content properties: Linking is expressed
by using the functional property hasNext (solid arrow)
that connects a component to its immediate successor or by
using the transitive property followedBy (dashed arrow)
that connects a component to all following components. A
pattern is characterised by restricting these properties. As
the subproperty relationship hasNext ⊑ followedBy is
asserted for SEQ patterns, followedBy relationships are
are implicitly defined between all connected components
(dotted arrows).
The property hasContent can be used to describe the

content of a pattern component. Finally, we introduce an
intital component (α) with no precursor and no content and
a final component (ω) with no successor and no content
(see table 1 for definitions) . A sequence pattern SP1 that
describes sequences that consist of “some instances of W,
then X, then Y, then followed by Z” (as shown in fig. 1) can
be described by the DL concept

SP1 ≡ α ⊓ ∃followedBy.(∃hasContent.W⊓ ∃hasNext.(∃hasContent.X
⊓ ∃hasNext.(∃hasContent.Y
⊓ ∃followedBy.(∃hasContent.Z
⊓ ∃followedBy.ω))))

For simplification, we can state this expression equivalently

18

Syntax Semantics

succeeds C ⊳ D C ⊓ ∃hasNext.D

TB
oxfollows C⋯D C ⊓ ∃isFollowedBy.D

has content [C] ∃hasContent.C
initial α ¬∃followedBy−.⊺ ⊓ ∃≤0hasContent.⊺
terminal ω ¬∃followedBy.⊺ ⊓ ∃≤0hasContent.⊺

Table 1: A selection of SEQ constructs and their definition. C and D denote arbitrary DL concepts
in SEQ notation as

SP1 ≡ [W] ⊳ [X] ⊳ [Y]⋯[Z]
with α and ω are not explicitly stated and arrows, dots and
square brackets capturing the details of the succeeds, fol-
lows and content restrictions. Consider, the pattern

SP2 ≡ [W] ⊳ [X] ⊳ [Y] ⊳ [Z]
The difference with SP1 here is that Y has to be directly fol-
lowed by Z. Intuitively we expect that SP2 is more special-
ized than SP1 and all instances of SP2 will also be instances
of SP1. As we have formalized SEQ patterns as DL con-
cepts, we can directly use the machinery for computing
DL concept subsumption to automatically compute pattern
subsumption. In this case a standard DL reasoner will infer
the subsumption relationship SP2 ⊑ SP1 (taking into con-
sideration that hasNext is a subproperty of followedBy).
The possibilities of subsumption reasoning get more in-

teresting when we use concept expressions (such as we
have done in the Musician example) rather than simple
concept names. For example we could define a chord by
its properties, e.g.

⎡⎢⎢⎢⎢⎢⎣
∃ root . C⊓ ∃ triad . Maj⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎦
where the pattern characterises a chord by the properties
root, triad and seventh. Given another more general
pattern that for example only restricts root and triad a rea-
soner could infer a subsumption relationship such as

⎡⎢⎢⎢⎢⎢⎣
∃ root . C⊓ ∃ triad . Maj⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎦
⊑ [∃ root . C⊓ ∃ triad . Maj]

In the work described in the following section we re-
strict ourselves to patterns that describe their content as a
conjunction of features (functional properties) as we can
discover patterns of this form automatically using the pat-
tern discovery method by [9]. Note, that in principle it is
also possible to make use of further DL operators when
defining patterns. For example, the pattern

[∃ root . ¬(F ⊔ G)⊓ ∃ triad . Maj]
matches major chords that have a root other then F or G,
and given our previous example pattern would give rise to

the subsumption relationship:
⎡⎢⎢⎢⎢⎢⎣
∃ root . C⊓ ∃ triad . Maj⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎦
⊑ [∃ root . ¬(F ⊔ G)⊓ ∃ triad . Maj]

Naturally the question arises how such patterns can be
created in practise. As manual modelling is often costly
and time consuming, it is interesting to investigate meth-
ods for automatic pattern creation. In the following sec-
tion we will outline the relationship of the SEQ formalism
to the established viewpoint approach to automatic pattern
discovery.

4. SUBSUMPTION STRUCTURE OF
DISTINCTIVE CHORD PATTERNS

Though SEQ patterns can be specified in a top-down man-
ner by a knowledge engineer, it is interesting to learn them
from a corpus of music. This approach leads to the ques-
tion which patterns are most relevant and interesting, which
is a typical question from the field of data mining. Depend-
ing on the application, there are different relevant proper-
ties. For the classification of music, which is very useful
in a Semantic Web scenario, we are interested in distinc-
tive patterns that help differentiate one class from another,
and general patterns that apply to many relevant data sets
in a class. Conklin [9] has applied this approach to chord
sequences and found a number of relevant patterns that we
further analysed using SEQ.
4.1 Representation of Feature Set Patterns

Pattern discovery using multiple viewpoints is a machine
learning approach for discovering patterns in sequential
musical data. It has mainly been used for discovery of pat-
terns in melodies, but recently also for learning patterns in
chord progressions [9]. Input and patterns are represented
using a feature set representation [12].
For a sequence of musical events (e.g. chords), view-

points are computed. A viewpoint τ is a function from
events to values in a specific range set. A feature is defined
as τ ∶ v where τ is a feature name and v a feature value. A
feature set then is a conjunction of features

{τ1 ∶ v1, . . . , τn ∶ vn}
and a pattern is a sequence

f1, . . . , fm

where each fi is a feature set.

19

events: Im7 IVm7 Im7 Vbm7b5 IV7 IIIsm7b5

fe
at
ur
es

degree I IV I Vb IV IIIs
basedegree I IV I V IV III

kp I II/IV I V/VII II/IV III
triad Min Min Min Dim Maj Dim

rootmvt) 4n 5n 5b 7s 7n

Table 2: Example decomposition of chord-events into feature sets for viewpoint learning

Table 2 shows an example of how a chord progression
is represented as a sequence of feature sets. The view-
points degree, triad and basedegree directly relate to
the chord symbol. Relationships between events are mod-
elled as features that belong to a single event and have to
be read as referring back to the previous event. The feature
rootmvt ∶ 4n for example expresses that the current root
event is a fourth about the previous event. In the case of
the first event features of this kind take the value) as there
is no previous event they could refer to. We use further
viewpoints in later examples such as meeus that indicates
harmonic function (tonic (T), dominant (D) or subdominant
(S)) as described by [13], kp that indicates chord degree
classes as described by [14] and ratio(dur) that indicates
the relative duration of an event.

4.2 Translation of Feature Set Patterns to SEQ
Feature set patterns can be translated into SEQ using a
translation function T that is defined as follows. Each fea-
ture τ ∶ v can be translated into a DL property restriction

T(τ ∶ v) = ∃τ.v
where every viewpoint τ corresponds to a functional prop-
erty τ and the value v is the filler that the property is re-
stricted to. A feature set is described by a DL concept in-
tersection

T({τ1 ∶ v1, . . . , τn ∶ vn}) = ∃τ1.v1 ⊓ . . . ⊓ ∃τn.vn
A feature set pattern f1 . . . fm can then be expressed using
hasNext relationships as

T(f1, . . . , fm) = [T(f1)] ⊳ . . . ⊳ [T(fm)]
In the following we will show examples of genre-specific

chord sequence patterns that have been learned from chord
sequences tagged with the genres jazz, classic and pop.

4.3 Maximally General Distinctive Chord Patterns

A maximally general distinctive pattern (MGDP) is a pat-
tern that is distinctive above a threshold and not subsumed
by any other distinctive pattern. They are least likely to
overfit the corpus and hence most likely to be useful for
classification. To measure distinctiveness the likelihood
ratio of a pattern P is employed. This is defined in [9, 15]
as

∆(P) de f= p(P∣⊕)
p(P∣⊖) =

c⊕(P) × n⊖
c⊖(P) × n⊕

where p(P∣⊕) is the probability of the pattern P in the cor-
pus, p(P∣⊖) is the probability of the pattern P in the an-
ticorpus (consisting of pieces of different classes), c⊕(P)
and c⊖(P) are the count of the pattern in the corpus and
the anticorpus respectively, and n⊕ and n⊖ are the size of
the corpus and anticorpus respectively.
Figure 2 (top) illustrates three MGDPs chosen from a

much larger set of highly distinctive patterns that were dis-
covered in a corpus of 856 chord sequences, divided into
genres jazz (338), classical (235), and popular (283) [16].
The interest ∆(P) of the pattern is indicated: for example,
the first pattern is overrepresented by a factor of 12.45. The
numbers in brackets indicate that the length of the pattern is
2 and it occurs in 65 jazz sequences but only 8 sequences in
the anticorpus (classical and popular sequences). The pat-
tern indicates a minor triad on degree III, followed by any
triad on degree III (due to the fact that the meeus property
indicates the T (tonic) chord transformation). Note that de-
spite this high level of abstraction in this pattern it remains
highly distinctive in this corpus for the jazz genre.
In the middle of Figure 2, instances of each of these

patterns are represented as fully saturated feature set se-
quences.

4.4 Subsumption Structure

To compute the subsumption structure of the learned view-
point patterns we translated viewpoint patterns into SEQ
concepts and used a DL reasoner to infer their subsumption
relationships.
The bottom part of Figure 2 illustrates a small fragment

of a subsumption hierarchy of viewpoint patterns, created
from a larger set of pattern that are maximally general and
distinctive (MGDP). The subsumption relationships were
computed by the SEQ-translation of the MGDPs. To com-
pute the subsumption relationships we translated the pat-
terns into SEQ and then use the OWL reasoner Pellet 1 to
classify. This figure has restricted the representation to five
MGDP that appear on the righthand side of the hierarchy.
Some internal concepts have been constructed in SEQ

and it can be seen how these capture commonalities be-
tween the MGDPs thereby providing richer structure to
a flat MGDP set. At the left hand side of the figure are
“primitive” features contained in single component pat-
terns. Substantial structure can be seen. For example,
triad ∶ Min can be seen to occur in four MGDPs and in
addition in one internal SEQ pattern.

1 http://clarkparsia.com/pellet/

20

⎧⎪⎪⎨⎪⎪⎩
kp ∶ III

basedegree ∶ III
triad ∶ Min

⎫⎪⎪⎬⎪⎪⎭ ,{ meeus ∶ T } ∆(P) =12.45 (2) (65, 8)

⎧⎪⎪⎨⎪⎪⎩
meeus ∶ D
kp ∶ II/IV

triad ∶ Maj
⎫⎪⎪⎬⎪⎪⎭ ,{ triad ∶ Min } ,{

kp ∶ VI
basedegree ∶ VI } ∆(P) =9.04 (3) (59, 10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ VI

degree ∶ VIb
basedegree ∶ VI
rootmvt ∶ 4n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∆(P) =7.66 (1) (60, 12)

Pattern

Look
To
The

Sky

IIIm7 IIIb dim

⋯ ,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ III

degree ∶ III
basedegree ∶ III

triad ∶ Min
rootmvt ∶ 4+

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ T
kp ∶ III

degree ∶ IIIb
basedegree ∶ III

triad ∶ Dim
rootmvt ∶ 1n

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, ⋯

Tangerine

I IV7 IIIm7 VI7

⋯ ,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ I

degree ∶ I
basedegree ∶ I

triad ∶ Maj
rootmvt ∶ 4n

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ II/IV

degree ∶ IV
basedegree ∶ IV

triad ∶ Maj
rootmvt ∶ 4n

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ S
kp ∶ III

degree ∶ III
basedegree ∶ III

triad ∶ Min
rootmvt ∶ 7n

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ VI

degree ∶ VI
basedegree ∶ VI

triad ∶ Maj
rootmvt ∶ 4n

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, ⋯

Q
uietN

ow

IIIb maj7 VIb maj7

⋯ ,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ III

degree ∶ IIIb
basedegree ∶ III

triad ∶ Maj
rootmvt ∶ 2n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

meeus ∶ D
kp ∶ VI

degree ∶ VIb
basedegree ∶ VI

triad ∶ Maj
rootmvt ∶ 4n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, ⋯

Matched Sequences

{ ratio(dur) ∶ 1/2 }
{ kp ∶ III }
{ kp ∶ I }
{ meeus ∶ T }
{ meeus ∶ D }
{ meeus ∶ S }
{ kp ∶ VI }
{ degree ∶ II }
{ ratio(dur) ∶ 1 }
{ triad ∶ Min }
{ kp ∶ II/IV }

{ kp ∶ III
triad ∶ Min }

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ratio(dur) ∶ 1

meeus ∶ D
kp ∶ II/IV

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ratio(dur) ∶ 1

meeus ∶ D
kp ∶ II/IV

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,{ triad ∶ Min } ,{ kp ∶ VI }

pattern 13.60 (3) (71, 8)

{ kp ∶ III
triad ∶ Min } ,{ meeus ∶ T }

pattern 12.45 (2) (65, 8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ratio(dur) ∶ 1
meeus ∶ D
kp ∶ II/IV

degree ∶ II

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,{ kp ∶ II/IV

triad ∶ Min }
pattern 9.43 (2) (80, 13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ratio(dur) ∶ 1/2

meeus ∶ S
triad ∶ Min

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,{ kp ∶ I }

pattern 9.66 (2) (63, 10)

{ kp ∶ III
triad ∶ Min } ,{ kp ∶ III }

⊺

pattern 12.45 (2) (65, 8)

Pattern Subsumption

Figure 2: Example of learned MGDP-patterns (top), matching sequences (middle) and pattern subsumption (bottom).

21

5. CONCLUSIONS

We introduced the SEQ language and showed how it ex-
presses sequential patterns and discussed some aspects of
syntax and the DL semantics of SEQ. We demonstrated
the usage of SEQ to represent and analyse chord patterns
that were discovered from a corpus using viewpoint learn-
ing. A DL reasoner can then use such patterns to classify
instance data. Further, the patterns can be classified au-
tomatically in terms of their subsumption relationships as
illustrated for distinctive patterns from [9].
Several possibilities for future research arise. Reason-

ing on metadata descriptions (as in our introductory exam-
ple) and structural descriptions within the same reasoning
formalism might offer interesting new application possibil-
ities for musicology and music information retrieval. Fur-
ther, the machine-learned descriptions could be comple-
mented with relationships between basic musical entities
such as notes, scales and chord as found in the harmony
literature.

6. REFERENCES

[1] T. Berners-Lee, Weaving the Web : the past, present
and future of the World Wide Web by its inventor. Lon-
don: Orion Business, 1999.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Se-
manticWeb,” Scientific American, vol. 284, pp. 34–43,
May 2001.

[3] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-
Schneider, and S. Rudolph, eds., OWL 2 Web Ontol-
ogy Language: Primer. W3C Recommendation, 27
October 2009. Available at http://www.w3.org/TR/
owl2-primer/.

[4] C. Harte, M. B. Sandler, S. A. Abdallah, and E. Gómez,
“Symbolic representation of musical chords: A pro-
posed syntax for text annotations,” in ISMIR, pp. 66–
71, 2005.

[5] A. Sheh and D. P. W. Ellis, “Chord segmentation and
recognition using em-trained hidden markov models.,”
in ISMIR, 2003.

[6] A. Anglade and S. Dixon, “Characterisation of har-
mony with inductive logic programming,” in Proc. of
the Ninth International Conference on Music Informa-
tion Retrieval (ISMIR), (Philadelphia, USA), pp. 63–
68, Sep 2008.

[7] M. Mauch, S. Dixon, C. Harte, M. Casey, and
B. Fields, “Discovering chord idioms through Beatles
and Real Book songs,” in Proceedings of ISMIR 2007
Vienna, Austria, pp. 255–258, 2007.

[8] N. Drummond, A. Rector, R. Stevens, G. Moulton,
M. Horridge, H. H. Wang, and J. Seidenberg, “Putting
OWL in Order: Patterns for Sequences in OWL,”
in 2nd OWL Experiences and Directions Workshop,
Athens, GA, 2006.

[9] D. Conklin, “Discovery of distinctive patterns in mu-
sic,” To appear in Intelligent Data Analysis, vol. 14,
no. 5, 2010.

[10] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. Patel-Schneider, eds., The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[11] F. Baader, I. Horrocks, and U. Sattler, “Description
Logics,” in Handbook of Knowledge Representation
(F. van Harmelen, V. Lifschitz, and B. Porter, eds.), El-
sevier, 2007.

[12] D. Conklin and M. Bergeron, “Feature set patterns
in music,” Computer Music Journal, vol. 32, no. 1,
pp. 60–70, 2008.

[13] N. Meeus, “Toward a post-Schoenbergian grammar
of tonal and pre-tonal harmonic progressions,” Music
Theory Online, vol. 6, January 2000.

[14] S. Kostka and D. Payne, Tonal Harmony. McGraw-
Hill, 2003.

[15] D. Conklin, “Distinctive Patterns in the First Move-
ment of Brahms’s String Quartet in C Minor,” To ap-
pear in Journal of Mathematics and Music, vol. 4,
no. 2, 2010.

[16] C. Pérez-Sancho, D. Rizo, and J.-M. Iñesta, “Genre
classification using chords and stochastic language
models,” Connection Science, vol. 20, no. 2&3,
pp. 145–159, 2009.

22

