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ABSTRACT

The decomposition of a music audio signal into its vocal
and backing track components is analogous to image-to-
image translation, where a mixed spectrogram is trans-
formed into its constituent sources. We propose a novel
application of the U-Net architecture — initially devel-
oped for medical imaging — for the task of source sep-
aration, given its proven capacity for recreating the fine,
low-level detail required for high-quality audio reproduc-
tion. Through both quantitative evaluation and subjective
assessment, experiments demonstrate that the proposed al-
gorithm achieves state-of-the-art performance.

1. INTRODUCTION

The field of Music Information Retrieval (MIR) concerns
itself, among other things, with the analysis of music in
its many facets, such as melody, timbre or rhythm [20].
Among those aspects, popular western commercial mu-
sic (“pop” music) is arguably characterized by emphasiz-
ing mainly the Melody and Accompaniment aspects; while
this is certainly an oversimplification in the context of the
whole genre, we restrict the focus of this paper to the
analysis of music that lends itself well to be described in
terms of a main melodic line (foreground) and accompa-
niment (background) [27]. Normally the melody is sung,
whereas the accompaniment is performed by one or more
instrumentalists; a singer delivers the lyrics, and the back-
ing musicians provide harmony as well as genre and style
cues [29].

The task of automatic singing voice separation consists
of estimating what the sung melody and accompaniment
would sound like in isolation. A clean vocal signal is help-
ful for other related MIR tasks, such as singer identifica-
tion [18] and lyric transcription [17]. As for commercial
applications, it is evident that the karaoke industry, esti-
mated to be worth billions of dollars globally [4], would
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directly benefit from such technology.

2. RELATED WORK

Several techniques have been proposed for blind source
separation of musical audio. Successful results have been
achieved with non-negative matrix factorization [26, 30,
32], Bayesian methods [21], and the analysis of repeating
structures [23].

Deep learning models have recently emerged as power-
ful alternatives to traditional methods. Notable examples
include [25] where a deep feed-forward network learns to
estimate an ideal binary spectrogram mask that represents
the spectrogram bins in which the vocal is more prominent
than the accompaniment. In [9] the authors employ a deep
recurrent architecture to predict soft masks that are multi-
plied with the original signal to obtain the desired isolated
source.

Convolutional encoder-decoder architectures have been
explored in the context of singing voice separation in [6]
and [8]. In both of these works, spectrograms are com-
pressed through a bottleneck layer and re-expanded to the
size of the target spectrogram. While this “hourglass” ar-
chitecture is undoubtedly successful in discovering global
patterns, it is unclear how much local detail is lost during
contraction.

One potential weakness shared by the papers cited
above is the lack of large training datasets. Existing mod-
els are usually trained on hundreds of tracks of lower-than-
commercial quality, and may therefore suffer from poor
generalization. In this work we aim to mitigate this prob-
lem using weakly labeled professionally produced music
tracks.

Over the last few years, considerable improvements
have occurred in the family of machine learning algorithms
known as image-to-image translation [11] — pixel-level
classification [2], automatic colorization [33], image seg-
mentation [1] — largely driven by advances in the design
of novel neural network architectures.

This paper formulates the voice separation task, whose
domain is often considered from a time-frequency perspec-
tive, as the translation of a mixed spectrogram into vocal
and instrumental spectrograms. By using this framework
we aim to make use of some of the advances in image-to-
image translation — especially in regard to the reproduc-
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tion of fine-grained details — to advance the state-of-the-
art of blind source separation for music.

3. METHODOLOGY

This work adapts the U-Net [24] architecture to the task
of vocal separation. The architecture was introduced in
biomedical imaging, to improve precision and localization
of microscopic images of neuronal structures. The archi-
tecture builds upon the fully convolutional network [14]
and is similar to the deconvolutional network [19]. In a de-
convolutional network, a stack of convolutional layers —
where each layer halves the size of the image but doubles
the number of channels — encodes the image into a small
and deep representation. That encoding is then decoded
to the original size of the image by a stack of upsampling
layers.

In the reproduction of a natural image, displacements
by just one pixel are usually not perceived as major dis-
tortions. In the frequency domain however, even a mi-
nor linear shift in the spectrogram has disastrous effects
on perception: this is particularly relevant in music sig-
nals, because of the logarithmic perception of frequency;
moreover, a shift in the time dimension can become audi-
ble as jitter and other artifacts. Therefore, it is crucial that
the reproduction preserves a high level of detail. The U-
Net adds additional skip connections between layers at the
same hierarchical level in the encoder and decoder. This al-
lows low-level information to flow directly from the high-
resolution input to the high-resolution output.

3.1 Architecture

The goal of the neural network architecture is to predict the
vocal and instrumental components of its input indirectly:
the output of the final decoder layer is a soft mask that is
multiplied element-wise with the mixed spectrogram to ob-
tain the final estimate. Figure 1 outlines the network archi-
tecture. In this work, we choose to train two separate mod-
els for the extraction of the instrumental and vocal com-
ponents of a signal, to allow for more divergent training
schemes for the two models in the future.

3.1.1 Training

Let X denote the magnitude of the spectrogram of the orig-
inal, mixed signal, that is, of the audio containing both vo-
cal and instrumental components. Let Y denote the mag-
nitude of the spectrograms of the target audio; the latter
refers to either the vocal (Yv) or the instrumental (Yi) com-
ponent of the input signal.

The loss function used to train the model is the L1,1

norm 1 of the difference of the target spectrogram and the
masked input spectrogram:

L(X,Y ; Θ) = ||f(X,Θ)�X − Y ||1,1 (1)

where f(X,Θ) is the output of the network model applied
to the input X with parameters Θ – that is the mask gener-
ated by the model.

1 The L1,1 norm of a matrix is simply the sum of the absolute values
of its elements.

Two U-Nets, Θv and Θi, are trained to predict vocal and
instrumental spectrogram masks, respectively.

3.1.2 Network Architecture Details

Our implementation of U-Net is similar to that of [11].
Each encoder layer consists of a strided 2D convolution
of stride 2 and kernel size 5x5, batch normalization, and
leaky rectified linear units (ReLU) with leakiness 0.2. In
the decoder we use strided deconvolution (sometimes re-
ferred to as transposed convolution) with stride 2 and ker-
nel size 5x5, batch normalization, plain ReLU, and use
50% dropout to the first three layers, as in [11]. In the final
layer we use a sigmoid activation function. The model is
trained using the ADAM [12] optimizer.

Given the heavy computational requirements of train-
ing such a model, we first downsample the input audio to
8192 Hz in order to speed up processing. We then com-
pute the Short Time Fourier Transform with a window size
of 1024 and hop length of 768 frames, and extract patches
of 128 frames (roughly 11 seconds) that we feed as input
and targets to the network. The magnitude spectrograms
are normalized to the range [0, 1].

3.1.3 Audio Signal Reconstruction

The neural network model operates exclusively on the
magnitude of audio spectrograms. The audio signal for an
individual (vocal/instrumental) component is rendered by
constructing a spectrogram: the output magnitude is given
by applying the mask predicted by the U-Net to the magni-
tude of the original spectrum, while the output phase is that
of the original spectrum, unaltered. Experimental results
presented below indicate that such a simple methodology
proves effective.

3.2 Dataset

As stated above, the description of the model architec-
ture assumes that training data was available in the form
of a triplet (original signal, vocal component, instrumental
component). Unless one is in the extremely fortunate po-
sition as to have access to vast amounts of unmixed multi-
track recordings, an alternative strategy has to be found in
order to train a model like the one described.

A solution to the issue was found by exploiting a spe-
cific but large set of commercially available recordings in
order to “construct” training data: instrumental versions of
recordings.

It is not uncommon for artists to release instrumental
versions of tracks along with the original mix. We lever-
age this fact by retrieving pairs of (original, instrumental)
tracks from a large commercial music database. Candi-
dates are found by examining the metadata for tracks with
matching duration and artist information, where the track
title (fuzzily) matches except for the string “Instrumen-
tal” occurring in exactly one title in the pair. The pool
of tracks is pruned by excluding exact content matches.
Details about the construction of this dataset can be found
in [10].
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Figure 1. Network Architecture

Genre Percentage
Pop 26.0%
Rap 21.3%
Dance & House 14.2%
Electronica 7.4%
R&B 3.9%
Rock 3.6%
Alternative 3.1%
Children’s 2.5%
Metal 2.5%
Latin 2.3%
Indie Rock 2.2%
Other 10.9%

Table 1. Training data genre distribution

The above approach provides a large source of X
(mixed) and Yi (instrumental) magnitude spectrogram
pairs. The vocal magnitude spectrogram Yv is obtained
from their half-wave rectified difference. A qualitative
analysis of a large handful of examples showed that this
technique produced reasonably isolated vocals.

The final dataset contains approximately 20,000 track
pairs, resulting in almost two months worth of continuous
audio. To the best of our knowledge, this is the largest
training data set ever applied to musical source separation.
Table 1 shows the relative distribution of the most frequent

genres in the dataset, obtained from the catalog metadata.

4. EVALUATION

We compare the proposed model to the Chimera model
[15] that produced the highest evaluation scores in the 2016
MIREX Source Separation campaign 2 ; we make use of
their web interface 3 to process audio clips. It should be
noted that the Chimera web server is running an improved
version of the algorithm that participated in MIREX, using
a hybrid “multiple heads” architecture that combines deep
clustering with a conventional neural network [16].

For evaluation purposes we built an additional baseline
model; it resembles the U-Net model but without the skip
connections, essentially creating a convolutional encoder-
decoder, similar to the “Deconvnet” [19].

We evaluate the three models on the standard iKala [5]
and MedleyDB dataset [3]. The iKala dataset has been
used as a standardized evaluation for the annual MIREX
campaign for several years, so there are many existing
results that can be used for comparison. MedleyDB on
the other hand was recently proposed as a higher-quality,
commercial-grade set of multi-track stems. We generate
isolated instrumental and vocal tracks by weighting sums
of instrumental/vocal stems by their respective mixing co-

2 www.music-ir.org/mirex/wiki/2016:Singing_
Voice_Separation_Results

3 danetapi.com/chimera
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U-Net Baseline Chimera
NSDR Vocal 11.094 8.549 8.749
NSDR Instrumental 14.435 10.906 11.626
SIR Vocal 23.960 20.402 21.301
SIR Instrumental 21.832 14.304 20.481
SAR Vocal 17.715 15.481 15.642
SAR Instrumental 14.120 12.002 11.539

Table 2. iKala mean scores

U-Net Baseline Chimera
NSDR Vocal 8.681 7.877 6.793
NSDR Instrumental 7.945 6.370 5.477
SIR Vocal 15.308 14.336 12.382
SIR Instrumental 21.975 16.928 20.880
SAR Vocal 11.301 10.632 10.033
SAR Instrumental 15.462 15.332 12.530

Table 3. MedleyDB mean scores

efficients as supplied by the MedleyDB Python API 4 . We
limit our evaluation to clips that are known to contain
vocals, using the melody transcriptions provided in both
iKala and MedleyDB.

The following functions are used to measure per-
formance: Signal-To-Distortion Ratio (SDR), Signal-to-
Interference Ratio (SIR), and Signal-to-Artifact Ratio
(SAR) [31]. Normalized SDR (NSDR) is defined as

NSDR(Se, Sr, Sm) = SDR(Se, Sr)− SDR(Sm, Sr) (2)

where Se is the estimated isolated signal, Sr is the refer-
ence isolated signal, and Sm is the mixed signal. We com-
pute performance measures using the mir eval toolkit [22].

Table 2 and Table 3 show that the U-Net significantly
outperforms both the baseline model and Chimera on all
three performance measures for both datasets. In Figure 2
we show an overview of the distributions for the different
evaluation measures.

Assuming that the distribution of tracks in the iKala
hold-out set used for MIREX evaluations matches those
in the public iKala set, we can compare our results to the
participants in the 2016 MIREX Singing Voice Separation
task. 5 Table 4 and Table 5 show NSDR scores for our
models compared to the best performing algorithms of the
2016 MIREX campaign.

In order to assess the effect of the U-Net’s skip connec-
tions, we can visualize the masks generated by the U-Net
and baseline models. From Figure 3 it is clear that while
the baseline model captures the overall structure, there is a
lack of fine-grained detail observable.

4.1 Subjective Evaluation

Emiya et al. introduced a protocol for the subjective eval-
uation of source separation algorithms [7]. They suggest

4 github.com/marl/medleyDB
5 http://www.music-ir.org/mirex/wiki/2016:

Singing_Voice_Separation_Results

Model Mean SD Min Max Median
U-Net 14.435 3.583 4.165 21.716 14.525
Baseline 10.906 3.247 1.846 19.641 10.869
Chimera 11.626 4.151 -0.368 20.812 12.045
LCP2 11.188 3.626 2.508 19.875 11.000
LCP1 10.926 3.835 0.742 19.960 10.800
MC2 9.668 3.676 -7.875 22.734 9.900

Table 4. iKala NSDR Instrumental, MIREX 2016

Model Mean SD Min Max Median
U-Net 11.094 3.566 2.392 20.720 10.804
Baseline 8.549 3.428 -0.696 18.530 8.746
Chimera 8.749 4.001 -1.850 18.701 8.868
LCP2 6.341 3.370 -1.958 17.240 5.997
LCP1 6.073 3.462 -1.658 17.170 5.649
MC2 5.289 2.914 -1.302 12.571 4.945

Table 5. iKala NSDR Vocal, MIREX 2016

asking human subjects four questions that broadly corre-
spond to the SDR/SIR/SAR measures, plus an additional
question regarding the overall sound quality.

As we asked these four questions to subjects without
music training, our subjects found them ambiguous, e.g.,
they had problems discerning between the absence of arti-
facts and general sound quality. For better clarity, we dis-
tilled the survey into the following two questions in the
vocal extraction case:

• Quality: “Rate the vocal quality in the examples be-
low.”

• Interference: “How well have the instruments in the
clip above been removed in the examples below?”

For instrumental extraction we asked similar questions:

• Quality: “Rate the sound quality of the examples be-
low relative to the reference above.”

• Extracting instruments: “Rate how well the instru-
ments are isolated in the examples below relative to
the full mix above.”

Data was collected using CrowdFlower 6 , an online
platform where humans carry out micro-tasks, such as im-
age classification, simple web searches, etc., in return for
small per-task payments.

In our survey, CrowdFlower users were asked to listen
to three clips of isolated audio, generated by U-Net, the
baseline model, and Chimera. The order of the three clips
was randomized. Each question asked one of the Quality
and Interference questions. In the Interference question
we also included a reference clip. The answers were given
according to a 7 step Likert scale [13], ranging from “Poor”
to “Perfect”. Figure 4 is a screen capture of a CrowdFlower
question.

6 www.crowdflower.com
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Figure 2. iKala vocal and instrumental scores

Figure 3. U-Net and baseline masks

Figure 4. CrowdFlower example question

To ensure the quality of the collected responses, we in-
terspersed the survey with “control questions” that the user
had to answer correctly according to a predefined set of ac-
ceptable answers on the Likert scale. Users of the platform
are unaware of which questions are control questions. If
they are answered incorrectly, the user is disqualified from
the task. A music expert external to our research group
was asked to provide acceptable answers to a number of
random clips that were designated as control questions.

For the survey we used 25 clips from the iKala dataset
and 42 clips from MedleyDB. We had 44 respondents and
724 total responses for the instrumental test, and 55 re-

spondents supplied 779 responses for the voice test 7 .
Figure 5 shows mean and standard deviation for an-

swers provided on CrowdFlower. The U-Net algorithm
outperforms the other two models on all questions.

5. CONCLUSION AND FUTURE WORK

We have explored the U-Net architecture in the context of
singing voice separation, and found that it brings clear im-
provements over the state-of-the-art. The benefits of low-
level skip connections were demonstrated by comparison
to plain convolutional encoder-decoders.

A factor that we feel should be investigated further is
the impact of large training data: work remains to be done
to correlate the effects of the size of the training dataset to
the quality of source separation.

We have observed some examples of poor separation on
tracks where the vocals are mixed at lower-than-average
volume, uncompressed, suffer from extreme application of
audio effects, or otherwise unconventionally mixed. Since
the training data consisted exclusively of commercially
produced recordings, we hypothesize that our model has
learned to distinguish the kind of voice typically found in
commercial pop music. We plan to investigate this further
by systematically analyzing the dependence of model per-
formance on the mixing conditions.

Finally, subjective evaluation of source separation al-
gorithms is an open research question. Several alternatives
exist to 7-step Likert scale, e.g. the ITU-R scale [28]. Tools
like CrowdFlower allow us to quickly roll out surveys, but
care is required in the design of question statements.
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