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ABSTRACT

The recognition of melodic structure depends on both the segmen-
tation into structural units, the melodic motifs, and relations of
motifs which are mainly determined by similarity. Existing mod-
els and studies of segmentation and motivic similarity cover only
certain aspects and do not provide a comprehensive or coherent
theory.

In this paper an Integrated Segmentation and Similarity Model
(ISSM) for melodic analysis is introduced. The ISSM yields
an interpretation similar to a paradigmatic analysis for a given
melody. An interpretation comprises a segmentation, assignments
of related motifs and notes, and detailed information on the differ-
ences of assigned motifs and notes. The ISSM is based on gener-
ating and rating interpretations to find the most adequate one. For
this rating a neuro-fuzzy-system is used, which combines knowl-
edge with learning from data.

The ISSM is an extension of a system for rhythm analysis.
This paper covers the model structure and the features relevant
for melodic and motivic analysis. Melodic segmentation and sim-
ilarity ratings are described and results of a small experiment
which show that the ISSM can learn structural interpretations
from data and that integrating similarity improves segmentation
performance of the model.

1. INTRODUCTION

Recognizing the structure of a melody is an essential part of musi-
cal listening. Although a model of melodic structure is needed for
analytical research as well as for practical applications, no gener-
ally accepted theory of melodic structures has yet been developed.
Neither is it generally clear how melodic structures can be found,
nor is it agreed on exactly what melodic structures are.

Yet there are two aspects that are essential for most theories of
melodic structure: segmentation and similarity. Segmentation de-
scribes structural units: perceptual groups or musically speaking
melodic motifs, the building blocks of melodic structure. Motif
relations are mainly determined by similarity. The importance of
motifs for melody has been stressed by many theorists. E.g. Rie-
mann said that understanding a melody depends essentially on
the recognition of the motif division intended by the composer
[1, p. 15]. The role of similarity has also been recognized early

by theorists like Koch who called for variety and uniformity by
repeating musical parts and putting them into a new but similar
form [2, p. 55].

Segmentation is influenced by factors like the Gestalt princi-
ple of proximity and properties of auditory perception like the
maximum number of elements in one segment. But segmentation
is also influenced by the similarity relations of motifs within a
melody which vice versa depend on segmentation. In their Gen-
erative Theory of Tonal Music[3] Lerdahl and Jackendoff refer
to this influence in their Grouping Preference Rules by defining
parallelism as a criterion for segmentation. For a computational
model of melodic structure both aspects should be integrated into
one coherent model.

There are some computer based models for the segmentation
of melodies like the Temporal Gestalt Perception (TGP) model
by Tenney und Polansky [4] and the Local Boundary Detection
Model (LBDM) by Cambouropoulos [5]. Similarity of motifs has
also been computer modeled. One approach is to use geomet-
rically motivated distance metrics for motifs like in TGP or in
Mathematical Music Theory (MaMuTh). The problem with met-
rics is the handling motifs of differing lengths which is solved in
MaMuTh by using motif topologies [6]. Another approach is to
use string matching methods which calculate the editing distance
of motifs by counting insertions and deletions of notes. These
models can handle motifs of different length elegantly but they
generally do not take into account the gradual differences of note
onset time, duration, pitch, and loudness. Lately Smith, McNab,
and Witten have presented a system which weights editing opera-
tions by differences in pitch and duration [7].

The Integrated Segmentation and Similarity Model (ISSM) pre-
sented in this paper combines segmentation and similarity rela-
tions in a model for the recognition of melodic structure. The
goal is to determine a structural interpretation of a melody, i.e. a
segmentation into motifs and assignment of each motif to one
other motif like it is shown in figure 1 (see also [8]). This ap-
proach is similar to paradigmatic analysis (see [9]) in that the as-
signments represent how motifs are interpreted by a listener as
being identical or similar to previous motifs. The choice of an
adequate interpretation for a given melody is a difficult task. Al-
though music theory and empirical studies have determined some
influential factors for the choice of interpretations, no coherent
or comprehensive theory has yet been established. So the aim of
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Figure 1: Interpretation of a simple melody.

this model is to integrate findings from music theory and existing
studies with system optimization by experimental data.

2. MODEL DESCRIPTION

The general scheme of the ISSM in application mode is to gen-
erate all possible interpretations and rate their quality to find the
most adequate one. The quality of an interpretation depends on
segmentation and motivic structure. The quality of motivic struc-
ture depends mainly on the similarity of motifs while the quality
of segmentation depends on temporal and tonal distances com-
bined with motivic relations. The rating of the interpretations is
done on the basis of feature values. They are calculated from the
interpretations and rate properties of the segmentation and the mo-
tivic structure. Segmentation features are for instance the length
(number of notes) and the duration (temporal extent) of motifs
and pitch intervals at motif boundaries. Features for the similarity
of assigned motifs depend on similarity of pitch, tempo, loudness,
and contour.

Rating all possible interpretations is computationally very in-
efficient because the number of possible interpretations grows ex-
ponentially with melody length. So only currently only a limited
context of up to 10 notes is used and some optimizations are em-
ployed (see [10]). The most effective way to limit the search space
is to use perceptually motivated constraints. These constraints
correspond to the GTTM’s Grouping Well-Formedness Rules and
prevent the generation of implausible interpretations or filter them
out before they are rated.

The calculation of an overall rating of an interpretation from
the features is done by a neural net which is based on fuzzy rules
(see [11]) and extended with a list processing feature (see [10]).
Other adaptive mapping systems could also be used but need to be
fitted to the list processing. The reason to use an adaptive system
here is that the strength and interaction of the influential factors is
generally not known and poses the greatest problem of modeling.
The module structure of the ISSM is shown in figure 2.

3. INTERPRETATION RATINGS

The rating of interpretations is essential for the output of the
ISSM. The features and rules related to rhythm and time are de-
scribed in [12] and [10]. In this paper the features which in-
troduced for melodic segmentation and motif similarity are de-
scribed.
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Figure 2: Modules of the ISSM.

Figure 3: Inner and outer intervals of a motif. The inner intervals
are both of distance 1 semitone, the outer intervals have
an average distance of 3.5 semitones.

3.1. Segmentation

For segmentation the ratios of the average distance of the inner
and outer intervals are calculated for each motif. The inner inter-
vals are those between adjacent notes within a motif, the outer in-
tervals are those between the adjacent notes of different motifs as
illustrated in figure 3. Additionally for the outer intervals the min-
imal distance of interval notes in the circle of fifth is calculated.
These features correspond to the Gestalt law of (tonal) proxim-
ity. The ISSM has a segmentation-only mode in which just these
ratings and the rhythmic segmentation ratings are used.

3.2. Similarity

For motif similarity feature values for transposition, pitch differ-
ences, contour similarity and correctness are calculated. This is



based on the assignment of each note of a motif to a note of the
assigned motif. Assigned notes are used for calculating trans-
position, pitch difference and contour similarity while the notes
which are not assigned contribute to a correctness feature. For
both rhythm and pitch the principle followed here is to separate
local from global deviations similar to the MaMuTh approach.
For pitch the global deviation is the transposition of a motif. The
transposition of a motif a′ compared to its assigned motif a is de-
termined by the most frequent interval of assigned notes, in case
of ambiguities the smallest interval and in the case of two small-
est intervals the ascending one is chosen. This transposition value
is subtracted from the pitch differences between the individual
notes as is shown in figure 4. The local pitch deviation for a motif
is calculated as the average difference of the notes.
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Figure 4: Global and local pitch differences of motifs a and b.

The contour rating is based on melodic difference vectors.
These are based on the vector of each inner time and pitch in-
terval in the pitch-time space as shown in figure 5. Each interval
vector in a motif is subtracted from the corresponding interval in
the assigned motif. An example is shown in figure 6. The aver-
age euclidian length of the difference vector defines the contour
distance. In the example shown the difference vector for the first
interval b1 − b′1 has the length 0 and the second one b2 − b′2has
the length 1 (assuming 1 semitone corresponds to 1 unit) and the
average is 0.5.

This brings about the question of scaling the pitch and time di-
mensions as in all models using vector metrics (TGP, LBDM, Ma-
MuTh). The hypothesis employed here is that the size of changes
relative to the size of intervals is important and that this relation is
local to the motif. So the scaling factor s of time relative to pitch
is calculated as the ratio of the average time and pitch intervals:

s =
average pitch interval

average onset time interval
(1)

The contour difference value cd of two assigned Motifs M,N is
calculated as

cd =
1
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where mi,ni are the ith assigned notes of M and N with np as the
pitch and nt as the onset time and ∆mx

i is the difference mx
i+1−mx

i .
These ratings take only the assigned notes into account. The

notes which are not assigned – and thus interpreted as insertions
or deletions – contribute to an correctness value, similar to an in-
verted editing distance. The correctness rating is calculated by
adding the differences of the extra notes from the average of their
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Figure 5: Interval vectors of motifs b and b′.
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Figure 6: Interval difference vectors of motifs b and b′.

surrounding notes in the motif. This means that an inserted note
makes less difference if its pitch lies between that of the surround-
ing notes.

3.3. Interpretations

The individual ratings for segmentation and similarity described
above and those for rhythm need to be combined to an overall rat-
ing of interpretations. This can be done by mappings like linear
combinations or neural nets. In the ISSM a neuro-fuzzy-system
is used which consists of a neural net whose structure is defined
by fuzzy rules. In this type of net each connection of neurons
corresponds to a fuzzy rule. This allows to integrate prior knowl-
edge with learning from data by defining the rules and training the
corresponding net.

4. LEARNING FROM DATA

The ISSM learns from examples of melodic interpretations which
it uses in an iterative training scheme. A neural net (and other
adaptive systems) can be trained by relative samples containing
two interpretations of which one is to be rated (see [13]). Itera-
tive training then generates relative samples whenever the system
chooses an interpretation that differs from the one provided by the
expert (see [10]). The learning process changes the weights in the
neural net which in the case of a fuzzy-logical neural net corre-
sponds to the fuzzy truth values of fuzzy rules which can have
a meaningful interpretation (see [11]). In the case of linear nets
this corresponds to linear regression while in neural nets with er-
ror backpropagation, sigmoid activation function, and weight de-
cay can be interpreted as a maximum likelihood estimate of the
weights given the data. Yet a maximum found by backpropaga-
tion is not guaranteed to be global, for this a full Bayesian model
would be needed (see [14]).



5. RESULTS

The ISSM has been implemented and can be used for mo-
tivic analysis, melody comparison or in segmentation-only mode
where no similarity information is used. It computes and graph-
ically displays segmentation, motivic relations, and data on the
individual differences of related motifs and notes (differences in
pitch or timing, inserted or deleted notes or groups). An expert
user can provide interpretations with the graphical user interface.
Previous versions have been tested intensively with rhythms.

A small experiment has been conducted with 15 beginnings of
song melodies (2–4 bars). They have been used as samples for
training the ISSM together with structural interpretations and with
segmentations. Learning of interpretations was successful for all
15 samples. This indicates that the ISSM can learn interpretations
with the currently used features.

Using segmentation-only mode the system could learn cor-
rect interpretations only for 10 of the 15 samples. This con-
firms that the motif similarity information which is not used in
segmentation-only mode is of importance for the segmentation.
The weights of the trained net were higher for the similarity fea-
tures than for the segmentation features which further corrobo-
rates the importance of motif relations for segmentation. Yet to
draw conclusions on perception and cognition of musical struc-
ture in general, larger samples sets from a group of subjects under
controlled conditions would be needed.

6. CONCLUSIONS

The ISSM is an integrated model for segmentation and structural
interpretation based on similarity. An integrated model is neces-
sary since both processes influence each other. The weighting and
interaction of aspects concerning both segmentation and interpre-
tation poses a problem for which an adaptive system that learns
from data proves to be useful. The ISSM learns from examples to
generate musically meaningful interpretations of melodies which
can be useful for applications like music retrieval, music tutorials,
and interactive music production tools. First results support the
view that it is necessary to take similarity into account for model-
ing segmentation. Future work should include experiments with
larger data sets to further explore the capabilities of the ISSM and
to learn more about the perception and cognition of melodies.
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