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Abstract
Reynolds’ abstraction theorem shows how a typing judgement in
System F can be translated into a relational statement (in second
order predicate logic) about inhabitants of the type. We obtain a
similar result for a single lambda calculus (a pure type system),
in which terms, types and their relations are expressed. Working
within a single system dispenses with the need for an interpretation
layer, allowing for an unusually simple presentation. While the
unification puts some constraints on the type system (which we
spell out), the result applies to many interesting cases, including
dependently-typed ones.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Type Structure

General Terms Languages, Theory

Keywords Pure type system, Abstraction theorem, Free theorems

1. Introduction
Reynolds [1983] defined a relational interpretation of System F
types, and showed that interpretations of a term of that type in
related contexts yield related results. He was thus able to constrain
interpretations of polymorphic types.

Wadler [1989] observed that if a type has no free variables,
the relational interpretation can thus be viewed as a parametricity
property satisfied by all terms of that type. Such properties have
been used in a variety of situations. A few examples include:

program transformation The fold/build rule can be used to re-
move intermediate lists [Gill et al. 1993]. Its correctness can be
proved using the parametricity condition derived from the type
of the function build [Johann 2002].

testing The testing of a polymorphic function can often be re-
duced to testing a single monomorphic instance. Bernardy et al.
[2010a] present a scheme for constructing such a monomorphic
instance for which the correctness proof relies on parametricity.

automatic program inversion It is possible to write a function
that inverts a polymorphic function given as input. The inver-
sion process essentially relies on the parametric behaviour of
the input function, and therefore its correctness relies on the
corresponding parametricity condition [Voigtländer 2009a].
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generic programming In a certain style of generic programming,
functions can be type-indexed. However, in some cases it is
useful to show that functions behave uniformly for all types.
Vytiniotis and Weirich [2009] use parametricity to show that
certain casting functions are equivalent to the identity.

encoding of inductive types Via Church-encodings, inductive types
can be encoded in pure System F. The proof of isomorphism
relies on the parametricity condition. Hinze [2005] gives an
illuminating example.

Parametricity in System F is useful enough that there has
been much research to transport it to related calculi. Johann and
Voigtländer [2005] have applied it to a system with explicit strict-
ness; Vytiniotis and Weirich [2010] to Fω extended with represen-
tation types; Takeuti [2004] sketches how it can be applied to the
λ-cube, Neis et al. [2009] to a system with dynamic casting. In this
paper, we apply Reynolds’ idea to dependently-typed systems. In
fact, we go one step further and generalize to a large class of pure
type systems [Barendregt 1992].

By targeting pure type systems (PTSs), we aim to provide a
framework which unifies previous descriptions of parametricity and
forms a basis for future studies of parametricity in specific type
systems. As a by-product, we get parametricity for dependently-
typed languages.

Our specific contributions are:

• A concise definition of the translation of types to relations (Def-
inition 4), which yields parametricity propositions for PTSs.

• A formulation (and a proof) of the abstraction theorem for a
useful class of PTSs (Theorem 1). A remarkable feature of the
theorem is that the translation from types to relations and the
translations from terms to proofs are unified.

• An extension of the translation to inductive definitions (Sec-
tion 4). Our examples use a notation close to that of Agda
[Norell 2007], for greater familiarity for users of dependently-
typed functional programming languages.

• A demonstration by example of how to derive free theorems for
(and as) dependently-typed functions (sections 3.1 and 5). Two
examples of functions that we tackle are:

generic catamorphism fold : ((F ,mapF ) : Functor) →
(A : ?) → (F A → A) → µF → A, which is a generic
catamorphism function defined within a dependently-typed
language (see Section 5.2).

generic cast gcast : (F : ? → ?) → (u t : U ) →
Maybe (F (El u) → F (El t)), which comes from a mod-
elling of representation types with universes (see Sec-
tion 5.3).

In both cases, the derived parametricity condition yields useful
properties to reason about the correctness of the function.



2. Pure type systems
In this section we briefly review the notion of PTS as described
by Barendregt [1992, sec. 5.2], and the basic intuitions behind it.
We introduce our notation along the way, as well as our running
example type system.

Definition 1 (Syntax of terms). A PTS is a type system over a λ-
calculus with the following syntax:

T = C constant
| V variable
| T T application
| λV :T . T abstraction
| ∀V :T . T dependent function space

We often write (x : A) → B for ∀x :A. B, and sometimes just
A→ B when x does not occur free in B.

The typing judgement of a PTS is parametrized over a specifica-
tion S = (S,A,R), where S ⊆ C,A ⊆ C×S andR ⊆ S×S×S.
The set S specifies the sorts,A the axioms (an axiom (c, s) ∈ A is
often written c : s), andR specifies the typing rules of the function
space. A rule (s1, s2, s2) is often written s1 ; s2. The rules for
typing judgements in a PTS are given in Figure 1.

An attractive feature of PTSs is that the syntax for types and
values is unified. It is the type of a term that tells how to interpret it
(as a value, type, kind, etc.).

the λ-cube Barendregt [1992] defined a family of calculi each
with S = {?,�}, A = {? : �} and R a selection of rules of the
form s1 ; s2, for example:

• The (monomorphic) λ-calculus has Rλ = {? ; ?}, corre-
sponding to ordinary functions.

• System F has RF = Rλ ∪ {� ; ?}, adding (impredicative)
universal quantification over types.

• System Fω has RFω = RF ∪ {� ; �}, adding type-level
functions.

• The Calculus of Constructions (CC) hasRCC = RFω ∪ {?;

�}, adding dependent types.

Here ? and � are conventionally called the sorts of types and kinds
respectively.

Notice that F is a subsystem of Fω, which is itself a subsystem
of CC. (We say that S1 = (S1,A1,R1) is a subsystem of S2 =
(S2,A2,R2) when S1 ⊆ S2, A1 ⊆ A2 and R1 ⊆ R2.) In fact,
the λ-cube is so named because the lattice of the subsystem relation
between all the systems forms a cube, with CC at the top.

sort hierarchies Difficulties with impredicativity1 have led to the
development of type systems with an infinite hierarchy of sorts.
The “pure” part of such a system can be captured in the following
PTS, which we name Iω .

Definition 2 (Iω). Iω is a PTS with this specification:

• S = {?i | i ∈ N}
• A = {?i : ?i+1 | i ∈ N}
• R = {(?i, ?j , ?max(i,j)) | i, j ∈ N}

Compared to the monomorphic λ-calculus, ? has been expanded
into the infinite hierarchy ?0, ?1, . . . In Iω , the sort ?0 (abbrevi-
ated ?) is called the sort of types. Type constructors, or type-level
functions have type ? → ?. The set of types (?), the set of type
constructors (? → ?) and similar have type ?1 (the sort of kinds).
Terms like ?1 and ?→ ?1 have type ?2, and so on.

Impredicativity can in fact coexist with an infinite hierarchy of
sorts, as Coquand [1986] has shown. For example, in the Gen-

1 It is inconsistent with strong sums [Coquand 1986].

axiom c : s ∈ A` c : s

Γ ` A : s
start

Γ, x : A ` x : A

Γ ` A : B Γ ` C : sweakening
Γ, x : C ` A : B

Γ ` A : s1 Γ, x : A ` B : s2product (s1, s2, s3) ∈ R
Γ ` (∀x :A. B) : s3

Γ ` F : (∀x :A. B) Γ ` a : A
application

Γ ` F a : B[x 7→ a]

Γ, x : A ` b : B Γ ` (∀x :A. B) : s
abstraction

Γ ` (λx :A. b) : (∀x :A. B)

Γ ` A : B Γ ` B′ : s B =β B′
conversion

Γ ` A : B′

Figure 1. Typing judgements of the PTS (S,A,R)

eralized Calculus of Constructions (CCω) of Miquel [2001], im-
predicativity exists for the sort ? (conventionally called the sort of
propositions), which lies at the bottom of the hierarchy.

Definition 3 (CCω). CCω is a PTS with this specification:

• S = {?} ∪ {�i | i ∈ N}
• A = {? : �0} ∪ {�i : �i+1 | i ∈ N}
• R = {?; ?, ?; �i,�i ; ? | i ∈ N} ∪

{(�i,�j ,�max(i,j)) | i, j ∈ N}

Both CC and Iω are subsystems of CCω , with ?i in Iω corre-
sponding to �i in CCω . Because � in CC corresponds to �0 in
CCω , we often abbreviate �0 as �.

Many dependently-typed programming languages and proof as-
sistants are based on variants of Iω or CCω , often with the addition
of inductive definitions [Dybjer 1994; Paulin-Mohring 1993]. Such
tools include Agda [Norell 2007], Coq [The Coq development team
2010] and Epigram [McBride and McKinna 2004].

2.1 PTS as logical system
Another use for PTSs is as logical systems: types correspond to
propositions and terms to proofs. This correspondence extends to
all aspects of the systems and is widely known as the Curry-Howard
isomorphism. The judgement ` p : P means that p is a witness, or
proof of the proposition P.

In the logical system reading, an inhabited type corresponds to
a tautology and dependent function types correspond to universal
quantification. Predicates over a type A have type A→ s, for some
sort s: a value satisfies the predicate whenever the returned type is
inhabited. Similarly, binary relations between values of types A1

and A2 have type A1 → A2 → s.
For this approach to be safe, it is important that the system be

consistent: some types must be uninhabited, or equivalently each
witness p must reduce to a normal form. This is the case for the
systems used here.

In fact, in Iω and similarly rich type systems, one may both rep-
resent programs and logical formulae about them. In the following
sections, we make full use of this property: we encode programs
and parametricity statements about them in the same type system.



3. Types to relations
We start by defining the relational interpretation of a term, as a syn-
tactic translation from terms to terms. As we see in Section 3.1, it
is a generalization of the classical rules given by Reynolds [1983],
extended to application and abstraction.

In this section, we assume that the only constants are sorts.
We also assume for each sort s another sort s̃ of parametricity
propositions about terms of type s. In our examples, we simply
choose s̃ = s. We shall return to the general case in Section 6.2.

Definition 4 ([[ ]], translation from types to relations). Given a
natural number n (the arity of relations), we assume for each
variable x, fresh variables x1, . . . , xn and xR. We write A for the
n terms Ai, each obtained by replacing each free variable x in A
with xi. Correspondingly, x :A stands for n bindings (xi :Ai). We
define a mapping [[ ]] from T to T as follows:

[[s]] = λx :s. x→ s̃

[[x]] = xR

[[∀x :A. B]] = λf : (∀x :A. B). ∀x :A. ∀xR : [[A]]x. [[B]] (f x)

[[F a]] = [[F]] a [[a]]

[[λx :A. b]] = λx :A. λxR : [[A]]x. [[b]]

Note that for each variable x free in A, the translation [[A]]
has free variables x1, . . . , xn and xR. There is a corresponding
replication of variables bound in contexts, which is made explicit
in the following definition.

Definition 5 (translation of contexts).

[[Γ, x : A]] = [[Γ]], x :A, xR : [[A]]x

Note that each tuple x : A in the translated context must satisfy
the relation [[A]], as witnessed by xR. Thus, one may interpret [[Γ]]
as n related environments.

In order for a PTS to be able to express both programs and para-
metricity propositions about them, it must satisfy certain closure
conditions, for which we coin the term reflective:

Definition 6 (reflective). A PTS (S,A,R) is reflective if

• for each sort s ∈ S
∃s̃ ∈ S
∃s′ ∈ S such that s : s′ ∈ A

• for each axiom s : s′ ∈ A
s̃ : s̃′ ∈ A
s; s̃′ ∈ R

• for each rule (s1, s2, s3) ∈ R
(s̃1, s̃2, s̃3) ∈ R
s1 ; s̃3 ∈ R

We can then state our main result:

Theorem 1 (abstraction). Given a reflective PTS (S,A,R),
Γ ` A : B =⇒ [[Γ]] ` [[A]] : [[B]]A

Proof. By induction on the derivation. A brief sketch of the proof
is given in appendix A.

The above theorem can be read in two ways. A direct reading is
as a typing judgement about translated terms: if A has type B, then
[[A]] has type [[B]]A. The more fruitful reading is as an abstraction
theorem for pure type systems: if A has type B in environment Γ,
then n interpretations A in related environments [[Γ]] are related by
[[B]]. Further, [[A]] is a witness of this proposition within the type
system. In particular, closed terms are related to themselves:

Corollary 2 (parametricity). ` A : B =⇒ ` [[A]] : [[B]]A

example systems Note that both Iω and CCω are reflective, with
s̃ = s. Therefore we can write programs in these systems and
derive valid statements about them, using [[ ]], within the same PTS.
We proceed to do so in the rest of the paper.

3.1 Examples: the λ-cube
In this section, we show that [[ ]] specializes to the rules given by
Reynolds [1983] to read a System F type as a relation. Having
shown that our framework can explain parametricity theorems for
System-F-style types, we move on to progressively higher-order
constructs. In these examples, the binary version of parametricity
is used (arity n = 2). For examples using the unary version (arity
n = 1) see Section 5.3.

While the systems of the λ-cube are not reflective, they are
embedded in CCω , which is. This means that our translation rules
take System F types to terms in CCω (instead of second order
propositional logic). The possibility of using a different PTS for
the logic is discussed in Section 6.3.

types to relations Note that, by definition,

[[?]]T1 T2 = T1 → T2 → ?

Assuming that types inhabit the sort ?, this means that types are
translated to relations (as expected). Here we also use ? on the
right side as the sort of propositions (?̃ = ?), but other choices
are possible, as we shall discuss in Section 6.2.

function types Applying our translation to non-dependent func-
tion types, we get:

[[A→ B]] : [[?]] (A→ B) (A→ B)
[[A→ B]] f1 f2 = ∀a1 : A. ∀a2 : A.

[[A]] a1 a2 → [[B]] (f1 a1) (f2 a2)

That is, functions are related iff they take related arguments into
related outputs.

type schemes System F includes universal quantification of the
form ∀A :?. B. Applying [[ ]] to this type expression yields:

[[∀A : ?. B]] : [[?]] (∀A : ?. B) (∀A : ?. B)
[[∀A : ?. B]] g1 g2 = ∀A1 : ?. ∀A2 : ?. ∀AR : [[?]]A1A2.

[[B]] (g1A1) (g2A2)

In words, polymorphic values are related iff instances at related
types are related. Note that as A may occur free in B, the variables
A1, A2 and AR may occur free in [[B]].

type constructors With the addition of the rule � ; �, one can
construct terms of type ?→ ?, which are sometimes known as type
constructors, type formers or type-level functions. As Voigtländer
[2009b] remarks, extending Reynolds-style parametricity to sup-
port type constructors appears to be folklore. Such folklore can be
precisely justified by our framework by applying [[ ]] to obtain the
relational counterpart of type constructors:

[[?→ ?]] : [[�]] (?→ ?) (?→ ?)
[[?→ ?]]F1 F2 = ∀A1 : ?. ∀A2 : ?.

[[?]]A1A2 → [[?]] (F1A1) (F2A2)

That is, a term of type [[? → ?]]F1 F2 is a (polymorphic) function
converting a relation between any types A1 and A2 to a relation
between F1A1 and F2A2, a relational action.

dependent functions In a system with the rule ? ; �, value
variables may occur in dependent function types like ∀x : A. B,
which we translate as follows:

[[∀x : A. B]] : [[?]] (∀x : A. B) (∀x : A. B)
[[∀x : A. B]] f1 f2 = ∀x1 : A. ∀x2 : A. ∀xR : [[A]]x1 x2.

[[B]] (f1 x1) (f2 x2)



proof terms We have used [[ ]] to turn types into relations, but we
can also use it to turn terms into proofs of abstraction properties.
As a simple example, the relation corresponding to the type T =
∀A :?. A→ A, namely

[[T ]] f1 f2 = ∀A1 : ?. ∀A2 : ?. ∀AR : [[?]]A1A2.
∀x1 : A1. ∀x2 : A2.
AR x1 x2→AR (f1A1 x1) (f2A2 x2)

states that functions of this type map related inputs to related out-
puts. From a term id = λA :?. λx :A. x of this type, by Theorem 2
we obtain a term [[id ]] : [[T ]] id id , that is, a proof of the abstraction
property:

[[id ]]A1A2AR x1 x2 xR = xR

4. Constants and data types
While the above development assumes pure type systems with
C = S, it is possible to add constants to the system and retain
parametricity, as long as each constant is parametric. That is, for
each new axiom ` k : A (where k is an arbitrary constant and A an
arbitrary term such that ` A : s, not a mere sort) we require a term
[[k]] such that the judgement ` [[k]] : [[A]] k holds. (Additionally, β-
conversion rules involving those constants must preserve types.)

One source of constants in many languages is data type defini-
tions. In the rest of the this section we detail how to handle such
definitions (in a system extending Iω).

4.1 Inductive families
Many languages permit data type declarations like those in Fig-
ure 2. Dependently typed languages typically allow the return types
of constructors to have different arguments, yielding inductive fam-
ilies [Dybjer 1994; Paulin-Mohring 1993] such as the family Vec,
in which the type is indexed by the number of elements.

Data family declarations of sort s (? in the examples) have the
typical form:2

data T (a :A) : ∀n :N. swhere
c : ∀b :B. (∀x :X. T a i)→ T a v

Arguments of the type constructor T may be either parameters
a, which scope over the constructors and are repeated at each
recursive use of T , or indices n, which may vary between uses.
Data constructors c have non-recursive arguments b, whose types
are otherwise unrestricted, and recursive arguments with types of a
constrained form, which cannot be referred to in the other terms.

Such a declaration can be interpreted as a simultaneous decla-
ration of formation and introduction constants

T : ∀a :A. ∀n :N. s
c : ∀a :A. ∀b :B. (∀x :X. T a i)→ T a v

and also an eliminator to analyse values of that type:

T -elim : ∀a :A.
∀P : (∀n :N. T a n→ s).
Casec → ∀n :N. ∀t :T an. P n t

where the type Casec of the case for each constructor c is

∀b :B. ∀u : (∀x :X. T a i). (∀x :X. P i (ux))→ P v (c a b u)

with beta-equivalences (one for each constructor c):

T -elim aP e v (c a b u) = e b u (λx :X. T -elim aP e i (ux))

We shall often use corresponding pattern matching definitions in-
stead of these eliminators [Coquand 1992].

2 We show only one of each element here, but the generalization to arbitrary
numbers is straightforward.

dataBool : ?where
true : Bool
false : Bool

dataNat : ?where
zero : Nat
succ : Nat → Nat

data⊥ : ?where -- no constructors

data> : ?where
tt : >

dataList (A : ?) : ?where
nil : List A
cons : A→ List A→ List A

dataVec (A : ?) : Nat → ?where
nilV : Vec A zero
consV : A→ (n : Nat)→ Vec A n → Vec A (succ n)

dataΣ (A : ?) (B : A→ ?) : ?where
, : (a : A)→ B a → Σ A B

data≡ (A : ?) (a : A) : A→ ?where
refl : ≡A a a

Figure 2. Example inductive families

For example, the definition of List in Figure 2 gives rise to the
following constants:

List : (A : ?)→ ?
nil : (A : ?)→ List A
cons : (A : ?)→ A→ List A→ List A
List-elim : (A : ?)→ (P : List A→ ?)→

P (nil A)→
((x : A)→ (xs : List A)→ P xs →

P (cons A x xs))→
(l : List A)→ P l

In the following sections, we consider two ways to define an
abstraction proof [[k]] : [[τ ]] k for each constant k : τ introduced by
the data definition.

4.2 Deductive-style translation
First, we define each proof as a term (using pattern matching to
simplify the presentation). We begin with the translation of the
equation for each constructor:

[[T -elim aP e v]] (c a b u) ([[c]] a aR b bR uuR) =
[[e b u (λx :X. T -elim aP e i (ux))]]

To turn this into a pattern matching definition of T-elim, we need
a suitable definition of [[c]], and similarly for the constructors in v.
The only arguments of [[c]] not already in scope are bR and uR,
so we package them as a dependent pair, because the type of uR
may depend on that of bR. Writing (x :A)× B for ΣA (λx :A.B),
and elements of this type as (a, b), omitting the arguments A and
λx :A.B, we define3

[[T ]] : [[∀a :A. ∀n :N. s]]T

[[T ]] a aR v [[v]] (c a b u) = (bR : [[B]] b)× [[∀x :X. T a i]]u
[[T ]] a aR uuR t = ⊥
[[c]] : [[∀a :A. ∀b :B. (∀x :X. T a i)→ T a v]] c
[[c]] a aR b bR uuR = (bR, uR)

3 The definition of [[T ]] relies on the weak elimination constant to sort s̃′.



and the translation of T-elim becomes

[[T -elim aP e v]] (c a b u) (bR, uR) =
[[e b u (λx :X. T -elim aP e i (ux))]]

Because [[T ]] yields ⊥ unless the constructors match, these clauses
provide complete coverage.

The reader may have noted by now that the argument lists of the
translated constants tend to be quite long. The use of the translated
constants can be substantially simplified using implicit arguments
(arguments which can be inferred from contextual knowledge). We
avoid using them in this paper to explicitly show the underlying ma-
chinery, but the Agda library implementing the translation makes
heavy use of implicit arguments for convenience.

Booleans To get an intuition of the meaning of the above trans-
lation scheme we proceed to apply it to a number of examples,
starting with the data type for Booleans. We obtain:

[[Bool ]] : [[?]] Bool Bool
[[Bool ]] true true = >
[[Bool ]] false false = >
[[Bool ]] = ⊥
[[true]] : [[Bool ]] true true
[[true]] = tt

[[false]] : [[Bool ]] false false
[[false]] = tt

(We use > for nullary constructors as it is the identity of ×.)

parametricity and elimination Reynolds [1983] and Wadler
[1989] assume that each type constant K : ? is translated to the
identity relation, as we have done for Bool above. This definition
is certainly compatible with the condition required by Theorem 1
for such constants: [[K ]] : [[?]] K K , but so are many other relations.
Are we missing some restriction for constants? This question might
be answered by resorting to a translation to pure terms via Church
encodings [Böhm and Berarducci 1985], as Wadler [2007] does.
However, in the hope to shed a different light on the issue, we give
another explanation, using our machinery.

Consider a base type, such as Bool : ?, equipped with construc-
tors true : Bool and false : Bool . In order to derive parametricity
theorems in a system containing such a constant Bool , we must
define [[Bool ]], satisfying ` [[Bool ]] : [[?]] Bool . What are the re-
strictions put on the term [[Bool ]]? First, we must be able to define
[[true]] : [[Bool ]] true . Therefore, [[Bool ]] true must be inhabited.
The same reasoning holds for the false case.

Second, to write any useful program using Booleans, a way
to test their value is needed. This may be done by adding a con-
stant if : Bool → (A : ?) → A → A → A, such that
if true A x y −→β x and if false A x y −→β y . (This special
case of Bool-elim is sufficient for the present example.)

Now, if a program uses if , we must also define [[if ]] of type
[[Bool → (A : ?) → A → A → A]] if for parametricity to work.
Let us expand the type of [[if ]] and attempt to give a definition case
by case:

[[if ]] : (b1 b2 : Bool)→ (bR : [[Bool ]] b1 b2)→
(A1A2 : ?)→ (AR : [[?]]A1A2)→
(x1 : A1)→ (x2 : A2)→ (xR : AR x1 x2)→
(y1 : A1)→ (y2 : A2)→ (yR : AR y1 y2)→
AR (if b1A1 x1 y1) (if b2A2 x2 y2)

[[if ]] true true bR x1 x2 xR y1 y2 yR = xR
[[if ]] true false bR x1 x2 xR y1 y2 yR = ?
[[if ]] false true bR x1 x2 xR y1 y2 yR = ?
[[if ]] false false bR x1 x2 xR y1 y2 yR = yR

(From this example onwards, we use a layout convention to ease the
reading of translated types: each triple of arguments, corresponding
to one argument in the original function, is written on its own line
if space permits.)

In order to complete the above definition, we must provide a
type-correct expression for each question mark. In the case of the
second equation, this means that we must construct an expression
of type AR x1 y2. Neither xR : AR x1 x2 nor yR : AR y1 y2 can
help us here. The only liberty left is in bR : [[Bool ]] true false .
If we let [[Bool ]] true false be ⊥, then this case can never be
reached and we need not give an equation for it. This reasoning
holds symmetrically for the third equation. Therefore, we have the
restrictions:

[[Bool ]] x x = some inhabited type
[[Bool ]] x y = ⊥ if x 6= y

We have some freedom regarding picking “some inhabited type”,
so we choose [[Bool ]] x x = >, yielding an encoding of the iden-
tity relation. In general, for any base type, the identity is the most
permissive relation which allows for a definition of the translation
of the eliminator.

An intuition behind parametricity is that, the more programs
“know” about a type, the more restricted parametricity theorems
are. Through the Bool example, we have seen how our framework
captures this intuition, in a fine grained manner. We revisit this idea
in Section 5.4.

lists and vectors From the definition of List in Figure 2, we have
the constant List : ? → ?, so List is an example of a type
constructor, and thus [[List ]] is a relation transformer. The relation
transformer we get by applying our scheme is exactly that given by
Wadler [1989]: lists are related iff their lengths are equal and their
elements are related point-wise.

JListK : [[?→ ?]] List List
JListKA1A2AR nil nil = >
JListKA1A2AR (cons x1 xs1) (cons x2 xs2) =
AR x1 x2 × JListKA1A2AR xs1 xs2

JListKA1A2AR = ⊥
[[nil ]] : [[(A : ?)→ List A]] nil nil
[[nil ]]A1A2AR = tt

[[cons]] : [[(A : ?)→ A→ List A→ List A]] cons cons
[[cons]]A1A2AR x1 x2 xR xs1 xs2 xsR = (xR, xsR)

The translations of the constants of Vec are given in Figure 3.

list rearrangements The first example of parametric type exam-
ined by Wadler [1989] is the type of list rearrangements: R = (A :
?) → List A → List A. Intuitively, functions of type R know
nothing about the actual argument type A, and therefore they can
only produce the output list by taking elements from the input list.
In this section we recover that result as an instance of Theorem 1.

Applying the translation to R yields:

JRK : R → R → ?
JRK r1 r2 = (A1A2 : ?)→ (AR : [[?]]A1A2)→

(l1 : List A1)→ (l2 : List A2)→
(lR : JListKA1A2AR l1 l2)→

JListKA1A2AR (r1A1 l1) (r2A2 l2)

In words: two list rearrangements r1 and r2 are related iff for all
types A1 and A2 with relation AR, and for all lists l1 and l2 point-
wise related byAR, the resulting lists r1A1 l1 and r2A2 l2 are also
point-wise related by AR. By corollary 2 (parametricity), we have,
for any r :

` r : R =⇒ ` [[r ]] : [[R]] r r



JVecK : [[(A : ?)→ Nat → ?]] Vec
JVecKA1A1AR zero zero nilV nilV = >
JVecKA1A1AR (succ n1) (succ n2) nR (consV n1 x1 xs1) (consV n2 x2 xs2) =
AR x1 x2× (nR : JNatKn1 n2)× JVecKA1A1AR n1 n2 nR xs1 xs2 xsR

JVecKA1A1AR n1 n2 nR xs1 xs2 = ⊥
JnilV K : [[(A : ?)→ Vec A zero]] nilV
JnilV KA1A1AR = tt

JconsV K : [[(A : ?)→ A→ (n : Nat)→ Vec A n → Vec A (succ n)]] consV
JconsV KA1A1AR x1 x2 xR n1 n2 nR xs1 xs2 xsR = (xR, (nR, xsR))

[[Vec-elim]] : J (A : ?)→
(P : (n : Nat)→ Vec n A→ ?)→
(en : P zero (nilV A))→
(ec : (x : A)→ (n : Nat)→ (xs : Vec n A)→ P n xs → P (succ n) (consV A x n xs))→
(n : Nat)→ (v : Vec n A)→ P n vK Vec-elim

[[Vec-elim]]A1A2AR P1 P2 PR en1 en2 enR ec1 ec2 ecR zero zero nilV nilV = enR
[[Vec-elim]]A1A2AR P1 P2 PR en1 en2 enR ec1 ec2 ecR (succ n1) (succ n2)nR

(consV x1 n1 xs1) (consV x2 n2 xs2) (xR, (nR, xsR)) =
ecR x1 x2 xR n1 n2 nR xs1 xs2 xsR (Vec-elim A1 P1 en1 ec1 n1 xs1) (Vec-elim A2 P2 en2 ec2 n2 xs2)

([[Vec-elim]]A1A2AR P1 P2 PR en1 en2 enR ec1 ec2 ecR n1 n2 nR xs1 xs2 xsR)

Figure 3. Deductive translation of Vec constants. ([[Nat ]] is the identity relation.)

In words: applying r preserves (point-wise) any relation existing
between input lists. By specializing AR to a function (AR a1 a2 =
f a1≡ a2) we obtain the well-known result:

` r : R =⇒
(A1A2 : ?)→ (f : A1 → A2)→
(l : List A1)→

map f (r A1 l)≡ r A2 (map f l)

(This form relies on the facts that [[List ]] preserves identities and
composes with map.)

proof terms We have seen that applying [[ ]] to a type yields a
parametricity property for terms of that type. However, by Theo-
rem 1 we can also apply [[ ]] to a term of that type to obtain a proof
of the property.

Consider a list rearrangement function odds that returns every
second element from a list.

odds : (A : ?)→ List A→ List A
odds A nil = nil A
odds A (cons x nil) = cons A x nil
odds A (cons x (cons xs)) = cons A x (odds A xs)

Any list rearrangement function must satisfy the parametricity con-
dition seen above. We know by Theorem 1 that [[odds]] is a proof
that odds satisfies parametricity. Expanding it yields:

[[odds]] : [[(A : ?)→ List A→ List A]] odds odds
[[odds]]A1A2AR nil nil = tt
[[odds]]A1A2AR (cons x1 nil) (cons x2 nil) (xR, ) =

(xR, tt)
[[odds]]A1A2AR (cons x1 (cons xs1))

(cons x2 (cons xs2)) (xR, ( , xsR)) =
(xR, [[odds]]A1A2AR xs1 xs2 xsR)

We see that [[odds]] performs essentially the same computation as
odds , on two lists in parallel. However, instead of building a new
list, it keeps track of the relations (in the R-subscripted variables).
This behaviour stems from the last two cases in the definition of
[[odds]]. Performing such a computation is enough to prove the
parametricity condition.

4.3 Inductive-style translation
Inductive definitions offer another way of defining the translations
[[c]] of the constants associated with a data type, an inductive defini-
tion in contrast to the deductive definitions of the previous section.
Given an inductive family

data T (a :A) : Kwhere
c : C

by applying our translation to the components of the data-
declaration, we obtain an inductive family that defines the rela-
tional counterparts of the original type T and its constructors c at
the same time:

data [[T ]] ([[a :A]]) : [[K]] (T a) where

c : [[C]] (c a)

It remains to supply a proof term for the parametricity of the
elimination constant T-elim. If the inductive family has the form

data T (a :A) : ∀n :N. swhere
c : ∀b :B. (∀x :X. T a i)→ T a v

then the proof [[T-elim]] can be defined using [[T ]]-elim and T-elim
as follows:

[[T-elim]] : [[∀a :A. ∀P : (∀n :N. T a n→ s). ∀e :Casec.
∀n :N. ∀t :T an. P n t]] T-elim

[[T-elim aP e]] = [[T ]]-elim a aR
(λ[[n :N, t :T an]].

[[P n t]] (T-elim aP en t))
(λ[[b :B, u : (∀x :X. T a i)]].

[[e b u]] (λx :X. T-elim aP e i (ux)))

Deductive and inductive-style translations define the same relation,
but the objects witnessing the instances of the inductively defined-
relation record additional information, namely which rules are used
to prove membership of the relation. However, since the same
constructor never appears in more than one case of the inductive
definition, that additional content can be recovered from a witness
of the deductive-style; therefore the two styles are truly isomorphic.



Booleans Applying the above scheme to the data-declaration of
Bool (from Figure 2), we obtain:

data [[Bool ]] : [[?]] Bool where
[[true]] : [[Bool ]] true

[[false]] : [[Bool ]] false

The main difference from the deductive-style definition is that it
is possible, by analysis of a value of type [[Bool ]], to recover the
arguments of the relation (either all true , or all false).

The elimination constant for Bool is

Bool -elim : (P : Bool → ?)→ P true → P false →
(b : Bool)→ P b

Similarly, our new type [[Bool ]] (with n = 2) has an elimination
constant with the following type:

[[Bool ]]-elim :
(C : (a1 a2 : Bool)→ [[Bool ]] a1 a2 → ?)→
C true true [[true]]→ C false false [[false]]→
(b1 b2 : Bool)→ (bR : [[Bool ]] b1 b2)→ C b1 b2 bR

As an instance of the above scheme, we can define [[Bool -elim]]
using the elimination constants [[Bool ]] and [[Bool ]]-elim as follows
(where t = true and f = false):

[[Bool -elim]] :
(P1 P2 : Bool → ?)→ (PR : [[Bool → ?]]P1 P2)→
(x1 : P1 t)→ (x2 : P2 t)→ (PR t t [[t ]]x1 x2)→
(y1 : P1 f )→ (y2 : P2 f )→ (PR f f [[f ]] y1 y2)→
(b1 b2 : Bool)→ (bR : [[Bool ]] b1 b2)→
PR b1 b2 bR (Bool -elim P1 x1 y1 b1)

(Bool -elim P2 x2 y2 b2)

[[Bool -elim]]P1 P2 PR x1 x2 xR y1 y2 yR
= [[Bool ]]-elim

(λ b1 b2 bR → PR b1 b2 bR (Bool -elim P1 x1 y1 b1)
(Bool -elim P2 x2 y2 b2))

xR yR

lists For List , as introduced in Figure 2, we have the following
translation:

data [[List ]] ([[A : ?]]) : [[?]] (List A)where

[[nil ]] : [[List A]] (nil A)

[[cons]] : [[A→ List A→ List A]] (cons A)

or after expansion (for n = 2):

data [[List ]] (A1A2 : ?) (AR : [[?]]A1A2) :
List A1 → List A2 → ?where

[[nil ]] : [[List ]]A1A2AR (nil A1) (nil A2)
[[cons]] : (x1 : A1)→ (x2 : A2)→ (xR : AR x1 x2)→

(xs1 : List A1)→ (xs2 : List A2)→
(xsR : [[List ]]A1A2AR xs1 xs2)→

[[List ]]A1A2AR (cons A1 x1 xs1)
(cons A2 x2 xs2)

The above definition encodes the same relational action as that
given in Section 4.2. Again, the difference is that the derivation of
a relation between lists l1 and l2 is available as an object of type
[[List ]]A1A2AR l1 l2.

proof terms The proof term for the list-rearrangement example
can be constructed in a similar way to the inductive one. The main
difference is that the target lists are also built and recorded in the
[[List ]] structure. In short, this version has more of a computational
flavour than the inductive version.

[[odds]] : [[(A : ?)→ List A→ List A]] odds odds
[[odds]]A1A2AR nil nil [[nil ]] = [[nil ]]A1A2AR

[[odds]]A1A2AR (cons nil) (cons nil)
([[cons]]x1 x2 xR nil nil [[nil ]]) =

[[cons]]A1A2AR x1 x2 xR
(nil A1) (nil A2) ([[nil ]]A1A2AR)

[[odds]]A1A2AR
(cons (cons )) (cons (cons ))
([[cons]]x1 x2 xR xs1 xs2

([[cons]] xs1 xs2 xsR)) =
[[cons]]A1A2AR x1 x2 xR

(odds A1 xs1) (odds A2 xs2)
([[odds]]A1A2AR xs1 xs2 xsR)

vectors We can apply the same translation method to inductive
families. For example, Figures 4 and 5 give the translation of the
family Vec, corresponding to lists indexed by their length. The
relation obtained by applying [[ ]] encodes that vectors are related
if their lengths are the same and if their elements are related point-
wise. The difference with the List version is that the equality of
lengths is encoded in [[consV ]] as a Nat (identity) relation.

5. Applications
In this section we shall see how examples going beyond Wadler
[1989] can be expressed in our setting. All examples fit within the
system Iω augmented with inductive definitions.

5.1 Type classes
What if a function is not parametrized over all types, but only
types equipped with decidable equality? One way to model this
difference in a pure type system is to add an extra parameter to
capture the extra constraint. For example, a function nub : Nub
removing duplicates from a list may be given the following type:

Nub = (A : ?)→ Eq A→ List A→ List A

The equality requirement itself may be modelled as a mere
comparison function: Eq A = A → A → Bool . In that case,
the parametricity statement is amended with an extra requirement
on the relation between types, which expresses that eq1 and eq2
must respect the AR relation. Formally:

[[Eq A]] eq1 eq2 = (a1 : A1)→ (a2 : A2)→ AR a1 a2 →
(b1 : A1)→ (b2 : A2)→ AR b1 b2 →
[[Bool ]] (eq1 a1 b1) (eq2 a2 b2)

[[Nub]]n1 n2 =
(A1A2 : ?)→ (AR : [[?]]A1A2)→
(eq1 : Eq A1)→ (eq2 : Eq A2)→ [[Eq A]] eq1 eq2 →
(l1 : List A1)→ (l2 : List A2)→ [[List A]] l1 l2 →
JList AK (n1A1 eq1 l1) (n2A2 eq2 l2)

So far, this is just confirming the informal description in Wadler
[1989]. But with access to full dependent types, one might wonder:
what if we model equality more precisely, for example by requiring
eq to be reflexive?

Eq ′A = (eq : A→ A→ Bool)×Refl eq
Refl eq = (x : A)→ eq x x ≡ true

In the case of Eq ′, the parametricity condition does not become
more exciting. It merely requires the proofs of reflexivity atA1,A2

to be related. This extra condition adds nothing new: since there
is at most one element in (and thus proof of) x ≡ y , one already
expects proofs to be related.

The observations drawn from this simple example can be gener-
alized in two ways. First, proof arguments do not strengthen para-
metricity conditions in useful ways. One often does not care about
the actual proof of a proposition, but merely that it exists, so know-
ing that two proofs are related adds nothing. Secondly, type-classes



data JVecK ([[A : ?]]) : [[Nat → ?]] (Vec A)where

JnilV K : [[Vec A zero]] (nilV A)

JconsV K : [[(x : A)→ (n : Nat)→ Vec A n → Vec A (succ n)]] (consV A)

data JVecK (A1A2 : ?) (AR : A1 → A2 → ?) : (n1 n2 : Nat)→ (nR : [[Nat ]]n1 n2)→
VecA1 n1 → VecA2 n2 → ?where

JnilV K : JVecKA1A2AR zero zero [[zero]] (nilV A1) (nilV A2)
JconsV K : (x1 : A1)→ (x2 : A2)→ (xR : AR x1 x2)→

(n1 : Nat)→ (n2 : Nat)→ (nR : [[Nat ]]n1 n2)→
(xs1 : VecA1 n1)→ (xs2 : VecA2 n2)→ (xsR : JVecKA1A2AR n1 n2 nR xs1 xs2)→
JVecKA1A2AR (succ n1) (succ n2) (JsuccKn1 n2 nR) (consV A1 x1 n1 xs1) (consV A2 x2 n2 xs2)

Figure 4. Inductive translation of Vec, both before and after expansion.

J Vec-elim K : J (A : ?)→
(P : (n : Nat)→ Vec n A→ ?)→
(en : P zero (nilV A))→
(ec : (x : A)→ (n : Nat)→ (xs : Vec n A)→ P n xs → P (succ n) (consV A x n xs))→
(n : Nat)→ (v : Vec n A)→ P n vK Vec-elim

J Vec-elim A P en ecK = [[Vec]]-elim AAR

(λ Jn : Nat , v : Vec n AK→ JP n vK (Vec-elim A P en ec v))
enR

(λ Jx : A,n : Nat , xs : Vec n AK→ Jec x n xsK (Vec-elim A P en ec xs))

Figure 5. Proof term for Vec-elim using the inductive-style definitions.

may be encoded as their dictionary of methods [Wadler and Blott
1989]. Indeed, even if a type class has associated laws, they have
little impact on the parametricity results.

5.2 Constructor classes
Having seen how to apply our framework both to type constructors
and type classes, we now apply it to types quantified over a type
constructor, with constraints.

Voigtländer [2009b] provides many such examples, using the
Monad constructor class. They fit well in our framework. For the
sake of brevity, we do not detail them more here. We can however
detail the definition of the simpler Functor class, which can be
modelled as follows:

Functor = (F : ?→ ?)×
((X Y : ?)→ (X → Y )→ F X → F Y )

Our translation readily applies to the above definition, and yields
the following relation between functors:

[[Functor ]] (F1,map1) (F2,map2)
= (FR : (A1A2 : ?)→ (AR : A1→A2→ ?)→

(F1A1 → F2A2 → ?))×
((X1X2 : ?)→ (XR : X1→X2→ ?)→
(Y1 Y2 : ?)→ (YR : Y1 →Y2 → ?)→
(f1 : X1→Y1)→ (f2 : X2→Y2)→
((x1 : X1)→ (x2 : X2)→ (xR : XR x1 x2)→
YR (f1 x1) (f2 x2))→

(y1 : F1X1)→ (y2 : F2X2)→
(yR : FRXR y1 y2)→
FR YR (map1 f1 y1) (map2 f2 y2))

In words, the translation of a functor is the product of a rela-
tion transformer (FR) between functors F1 and F2, and a witness
(mapR) that map1 and map2 preserve relations.

Such Functors can be used to define a generic fold operation,
which typically takes the following form:

dataµ ((F ,map) : Functor) : ?where
In : F (µ (F ,map))→ µ (F ,map)

fold : ((F ,map) : Functor)→ (A : ?)→
(F A→ A)→ µ (F ,map)→ A

fold (F ,map) Aφ (In d) =
φ (map (µ (F ,map)) A (fold (F ,map) Aφ) d)

Note that the µ datatype is not strictly positive, so its use would
be prohibited in many dependently-typed languages to avoid incon-
sistency. However, if one restricts oneself to well-behaved functors
(yielding strictly positive types), then consistency is restored both
in the source and target systems, and the parametricity condition
derived for fold is valid.

One can see from the type of fold that it behaves uniformly over
(F ,map) as well as A. By applying [[ ]] to fold and its type, this
observation can be expressed (and justified) formally and used to
reason about fold . Further, every function defined using fold , and
in general any function parametrized over any functor enjoys the
same kind of property.

Gibbons and Paterson [2009] previously made a similar obser-
vation in a categorical setting, showing that fold is a natural trans-
formation between higher-order functors. Their argument heavily
relies on categorical semantics and the universal property of fold ,
while our type-theoretical argument uses the type of fold as a start-
ing point and directly obtains a parametricity property. However
some additional work is required to obtain the equivalent property
using natural transformations and horizontal compositions from the
parametricity property.

5.3 Generic cast
Continuing to apply our framework to terms of increasingly rich
types, the next candidate is dependently typed.



An important application of dependent types is that of generic
programming with universes, as in the work of Altenkirch and
McBride [2003]; Benke et al. [2003]. The basic idea is to represent
the “universe” of types as data, and provide an interpretation func-
tion from values of this data type to types (in ?). Generic functions
can then be written by pattern matching on the type representation.
While universes usually capture large classes of types, we use as an
example a very simple universe of types for Booleans and natural
numbers, as follows.4

dataU : ?1 where
bool : U
nat : U

El : U → ?
El bool = Bool
El nat = Nat

An example of a dependently-typed, generic function is gcast ,
which for any type context F and any two (codes for) types u and
t , returns a casting function between F (El u) and F (El t), if u
and t are the same (and nothing otherwise).

gcast : (F : ?→ ?)→ (u t : U )→
Maybe (F (El u)→ F (El t))

gcast F bool bool = just (λ x → x )
gcast F nat nat = just (λ x → x )
gcast F = nothing

dataMaybe (A : ?) : ?where
nothing : Maybe A
just : A→ Maybe A

The function gcast is deemed safe if it returns the identity
function whenever it returns something. Vytiniotis and Weirich
[2009] show that this theorem can be deduced from the type of
gcast alone, by parametricity. While the result can be re-derived in
a simple way by reasoning directly on the definition of gcast , there
is a good reason for using parametricity: as the universe is extended
to a realistic definition, the definition of gcast gets more complex,
but its type remains the same, and therefore the argument relying
on parametricity is unchanged.

The rest of this section is devoted to rederiving the result using
our framework. The first step is to encode the theorem. We can
encode that an arbitrary function f : A → B is the identity as
the formula (x : A) → f x ∼= x . Note that because the input and
output types of the cast are not definitionally equal, we must use a
heterogeneous equality (∼=), defined as follows:

data ∼= (A : ?) (a : A) : (B : ?)→ B → ?where
refl ′ : ∼= A a A a

Now, gcast is not a direct conversion function: sometimes it returns
no result; its result is wrapped in Maybe . Hence we use a helper
function to lift the identity predicate to a Maybe type:

onMaybe : (A : ?)→ (A→ ?)→ Maybe A→ ?
onMaybe A P nothing = >
onMaybe A P (just a) = P a

The theorem can then be expressed as follows:

Theorem 3 (gcast is safe).
(F : ?→ ?)→ (u t : U )→ (x : F (El u))→

onMaybe (F (El u)→F (El t))
(λ cast→ cast x ∼= x )
(gcast F u t)

4 For the present section, U : ? would be sufficient, but we define U : ?1
to permit a different definition of [[U ]] in the next section.

We remark that onMaybe is in fact the deductive version of
[[Maybe]], for the unary version of [[ ]]. We take this as a hint to
use the unary version of [[ ]], and derive relations of the following
types:

[[U ]] : U → ?1
[[El ]] : (u : U )→ (uR : [[U ]] u)→ [[?]] (El u)
[[gcast ]] : (F : ?→ ?)→ (FR : [[?→ ?]] F )→

(u : U )→ (uR : [[U ]] u)→
(t : U )→ (tR : [[U ]] t)→
[[Maybe]] (F (El u)→F (El t))

(λ cast → (x : F (El u))→
FR (El u) ([[El ]] u uR) x →
FR (El t) ([[El ]] t tR) (cast x ))

(gcast F u t)

Additionally, we can define paramU :

paramU : (u : U )→ [[U ]] u
paramU bool = [[bool ]]
paramU nat = [[nat ]]

We can then use [[gcast ]] to prove the theorem. The idea is to
specialize it to the types and relations of interest:

lemma1 : (F : ?→ ?)→ (u t : U )→ (x : F (El u))→
[[Maybe]] (F (El u)→ F (El t))

(λ cast→ (x ′ : F (El u))→ x ′∼= x→
cast x ′∼= x )

(gcast F u t)

lemma1 F u t x = [[gcast ]] F (λ tR y → y ∼= x )
u (paramU u)
t (paramU t)

By fixing x ′ to x in the argument to [[Maybe]], the condition x ′∼= x
is fulfilled, and the proof is complete.

The remarkable feature of this proof is that it is essentially
independent of the definitions of U and El : only their types matter.
Adding constructors in U would not change anything in the proof:
[[gcast ]] isolates Theorem 3 from the actual definitions of U , El
and gcast ; it can be generated automatically from gcast .

In summary, we have proved the correctness of gcast in three
steps:

1. Model representation types within our dependently-typed lan-
guage;

2. use [[ ]] to obtain parametricity properties of any function of
interest;

3. prove correctness by using the properties.

We think that the above process is an economical way to work
with parametricity for extended type systems. Indeed, step one
of the above process is becoming an increasingly popular way
to develop languages with exotic type systems as an embedding
in a dependently-typed language [Oury and Swierstra 2008]. By
providing (an automatic) step two, we hope to spare language
designers the effort to adapt Reynolds’ abstraction theorem for new
type systems in an ad-hoc way.

5.4 A partially constrained universe
So far we have only seen universes which are either completely un-
constrained (like ?) and translate to arbitrary relations, or universes
which are completely constrained (like Bool or U in the previ-
ous section) and translate to the identity relation. In this section we
show that a middle ground is also possible.

Suppose that we want the same universe as in the above section,
but with only limited capabilities to dispatch on the type. That is,
we allow users to define functions that have special behaviour for



Booleans, but are otherwise oblivious to the actual type at which
they are used. This particular functionality may be encoded by only
providing an eliminator for U with restricted capabilities:

typeTest : (u : U )→ (F : ?→ ?)→
F Bool → ((A : ?)→ F A)→ F (El u)

typeTest bool F AB AGen = AB

typeTest t F AB AGen = AGen (El t)

This restriction of elimination allows us to “relax” the definitions
of [[U ]] and [[El ]], by translating the cases that do not involve bool
to an arbitrary relation (for n = 2):

[[U ]] : U → U → ?1
[[U ]] bool bool = >
[[U ]] bool = ⊥
[[U ]] bool = ⊥
[[U ]]u1 u2 = [[?]] (El u1) (El u2)

[[El ]] : (u1 u2 : U )→ (uR : [[U ]]u1 u2)→
[[?]] (El u1) (El u2)

[[El ]] bool bool r = [[Bool ]]
[[El ]]u1 u2 r = r

Given the above definitions, free theorems involving U reduce
to the constrained case if presented with Booleans, and to the
unconstrained case otherwise.

While the above is a toy example, it points the way towards
more sophisticated representations of universes. An example would
be an encoding of fresh abstract type variables, as in Neis et al.
[2009].

6. Discussion
6.1 Proof
A detailed sketch of the proof of Theorem 1 is available online
[Bernardy et al. 2010b]. Beyond the pen-and-paper version, we also
have a machine-checked proof, for the unary case, as an Agda pro-
gram [Bernardy 2010]. A few improvements are necessary before
it can be considered a fully-machine-checked proof:

• some substitution lemmas need to be proved;
• the top-level structure needs some superficial restructuring to

pass the termination-check of the Agda system;
• proofs of some lemmas given by Barendregt [1992] should be

formalized.

6.2 Different source and target sorts
Even though the sort-mapping function ˜ used in all our examples
has been the identity, there are other possible choices. For example,
Iω is reflective with ?̃i = ?i+k, for any natural k. Other examples
can be constructed by mapping ˜ to “fresh” sorts. The following
system (Iω+) is reflective with ?̃i = 4i and 4̃i = 4i.
Definition 7 (Iω+). Iω+ is a PTS with this specification:

• S = {?i | i ∈ N} ∪ {4i | i ∈ N}
• A = {4i : 4i+1 | i ∈ N} ∪ {?i : ?i+1 | i ∈ N}
• R = {(?i, ?j , ?max(i,j)) | i, j ∈ N}

{(4i,4j ,4max(i,j)) | i, j ∈ N}
{?i ; 4j | i 6 j ∈ N}

6.3 Different source and target systems
For simplicity, we have chosen to use the same source and target
PTS in Theorem 1. However, the theorem may be generalized to
the case where source and target are different. One way to relax the
hypothesis is to allow any source PTS which is a subsystem of the
target one, keeping the same conditions for the target PTS.

For example, using this generalization, we see that all the para-
metricity statements about terms in the λ-cube are expressible and
provable in the generalized calculus of constructions (CCω). In-
deed, we observe that

• CCω is reflective with s̃ = s and,
• All eight systems of the λ-cube are embedded in CCω

While extending our abstraction to subsystems is useful, further
generalization is possible. For example, parametricity theorems
(and proofs) generated from terms in the λ-cube will never use the
higher sorts of CCω . Specifying necessary and sufficient conditions
for the two-system case is left as future work.

6.4 Internalizing the meta-theorem
Theorem 1 and Corollary 2 (` A : B =⇒ ` [[A]] : [[B]]A) are
meta-theorems. One can instantiate the corollary by choosing spe-
cific terms A and B; then [[A]] is a proof of [[B]]A in the system, de-
rived from the structure of ` A : B. Our examples consist of many
such instantiations.

However, one would like to go further and make a general
statement about about all values of type B within the system. That
is, for a type B, to define paramB : (∀x : B. [[B]]x . . . x), as we
did with paramU in Section 5.3, essentially making the semantics
of the type available for reasoning within the system. In particular,
for any constant k : B, we could define [[k]] = paramB k.

One way to proceed is to assert parametricity at all types, with
a constant paramB for each B. This approach was applied to CC
by Takeuti [2004], extending similar axiom schemes for System F
by Plotkin and Abadi [1993]. For each α : � and P : α, Takeuti
defined a relational interpretation 〈P〉 and a kind (|P : α|) such
that 〈P〉 : (|P : α|). Then for each type T : ?, he postulated
an axiom paramT : (∀x : T. 〈T〉xx), conjecturing that such
axioms did not make the system inconsistent. For closed terms P,
Takeuti’s translations 〈P〉 and (|P :α|) resemble our [[P]] and [[α]]P
respectively (with n = 2), but the pattern is obscured by an error
in the translation rule for the product � ; ?, and the omission of
a witness xR for the relationship between values x1 and x2 in the
rules corresponding to the product ?; �.

Another approach would be to provide access to the terms via
some form of reflection.

6.5 Related work
Some of the many studies of parametricity have already been men-
tioned and analysed in the rest of the paper. In this section we com-
pare our work to only a couple of the most relevant pieces of work.

One direction of research is concerned with parametricity in
extensions of System F. Our work is directly inspired by Vytiniotis
and Weirich [2010], which extend parametricity to (an extension
of) Fω: indeed, Fω can be seen as a PTS with one more product
rule than System F.

Besides supporting more sorts and function spaces, an orthogo-
nal extension of parametricity theory is to support impure features
in the system. For example, [Johann and Voigtländer 2005] stud-
ied how explicit strictness modifies parametricity results. It is not
obvious how to support such extensions in our framework.

Another direction of research is concerned with better under-
standing of parametricity. Here we shall mention only [Wadler
2007], which gives a particularly lucid presentation of the abstrac-
tion theorem, as the inverse of Girard’s Representation theorem
[Girard 1972]. Our version of the abstraction theorem differs in the
following aspects compared to that of Wadler (and to our knowl-
edge all others):

1. Instead of targeting a logic, we target its propositions-as-types
interpretation, expressed in a PTS.



2. We abstract from the details of the systems, generalizing to a
class of PTS’s.

3. We add that the translation function used to interpret types
as relations can also be used to interpret terms as witnesses
of those relations. In short, the [[A]] part of Γ ` A : B =⇒
[[Γ]] ` [[A]] : [[B]]A is new. This additional insight depends heav-
ily on using the propositions-as-types interpretation.

It also appears that the function [[ ]] (for the unary case) has been
discovered independently by Monnier and Haguenauer [2010], for
a very different purpose. They use [[ ]] as a compilation function
from CC to a language with singleton types only, in order to en-
force phase-distinction. Type preservation of the translation scheme
is the main formal property presented by Monnier and Haguenauer.
We remark that this property corresponds to the abstraction theo-
rem for CC.

6.6 Future work
Our explanation of parametricity for dependent types has opened a
whole range of interesting topics for future work.

We should investigate whether our framework can be applied
(and extended if need be) to more exotic systems, for example those
incorporating strictness annotations (seq) or non-termination.

We should extend our translation to support non-informative
function spaces, as found for example in Coq. In Coq, the sort ? of
CC is split into two separate sorts, one for types (Set) and one for
propositions (Prop). Inhabitants of Set can depend on inhabitants
of Prop: for example, a program may depend on a certain property
to terminate. However, computational content can never “leak”
from Prop to Set : programs may only depend on the existence of
a proof; it is forbidden to inspect their structure. In such a situation,
our translation scheme appears to generate parametricity results
that are too weak, as we have briefly alluded to in Section 5.1. The
reason is that we always assume that computational content may be
transferred from the argument of a function to its result. We could
modify the translation to omit the superfluous relation parameter in
such cases.

Reynolds’ abstraction theorem can be understood as an embed-
ding of polymorphic lambda calculus into second order proposi-
tional logic. Wadler [2007] showed that Girard’s representation the-
orem [Girard 1972] can be understood as the corresponding pro-
jection. In this work we have shown that the embedding can be
generalized for more complex type systems. The question of how
the projection generalizes naturally arises, and should also be ad-
dressed.

It is straightforward to derive translated types using our schema,
but tedious. Providing [[ ]] as a meta-function would greatly ease
experimentation with our technique. Another direction worth ex-
ploring is to provide the parametricity axiom (param ) as a meta-
function in a logical framework.

We presented only simple examples. Applying the results to
more substantial applications should be done as well.

7. Conclusion
We have shown that it is not only possible, but easy to derive
parametricity conditions in a dependently-typed language.

Further, it is possible to analyse parametricity properties of
custom languages, via their embedding in a dependently-typed host
language.
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A. Proof of the abstraction theorem
In this appendix we sketch the proof of our main theorem, using
the following lemma:

Lemma 4 (translation preserves β-reduction).

A −→∗β A′ =⇒ [[A]] −→∗β [[A′]]

Proof sketch. The proof proceeds by induction on the derivation
of A −→∗β A′. The interesting case is where the term A is a β-
redex (λx :B.C) b. That case relies on the way [[ ]] interacts with
substitution:

[[b[x 7→ C]]] = [[b]][x 7→ C][xR 7→ [[C]]]

The remaining cases are congruences.

Theorem (abstraction). In a reflective PTS,

Γ ` A : B =⇒ [[Γ]] ` [[A]] : [[B]]A

Proof sketch. A derivation of [[Γ]] ` [[A]] : [[B]]A is constructed by
induction on the derivation of Γ ` A : B, using the syntactic prop-
erties of PTSs. We have one case for each typing rule: each type rule
translates to a portion of a corresponding relational typing judge-
ment, as shown in Figure 6.

For convenience, the proof uses a variant form of the abstrac-
tion rule; equivalence of the two systems follows from Barendregt
[1992, Lemma 5.2.13]. The conversion case uses Lemma 4.


