Department of Computer Science

Artur d'Avila Garcez


Photo of Dr Artur d'Avila Garcez Dr Artur d'Avila Garcez
Room: A309
Department of Computer Science
School of Informatics
City University
London EC1V OHB
tel: +44 20 7040 8344
fax: +44 20 7040 0244

The Machine Learning group webpage

Dagstuhl Seminar on Neural-Symbolic Learning and Reasoning, Wadern, Germany, September 14-19, 2014 (organiser).

Artur Garcez is a Reader in Neural-Symbolic Computation at the Department of Computer Science, City University London. He holds a Ph.D. in Computing (2000) from Imperial College London. He is a Fellow of the British Computer Society (FBCS), member of the ACM, AAAI, IEEE, CGCA, and partner at Performance Systems Ltd., Rio de Janeiro. Garcez is the founder of the Machine Learning research group at City University, and Director of the new MSc course in Data Science.

Garcez has an established track record of research in Machine Learning, Neural Computing and Artificial Intelligence. He has co-authored two books: Neural-Symbolic Cognitive Reasoning, with Lamb and Gabbay (Springer 2009), and Neural-Symbolic Learning Systems, with Broda and Gabbay (Springer 2002). His research has led to publications in Behavioral & Brain Sciences, Theoretical Computer Science, Neural Computation, Machine Learning, Journal of Logic and Computation, Artificial Intelligence, Journal of Applied Logic, IEEE Transactions on Neural Networks and Learning Systems, and Studia Logica. He has consistently published at the flagship Artificial Intelligence and Neural Computation conferences AAAI, NIPS, IJCAI, IJCNN, ECAI.

Garcez is editor-in-chief of the Neural Computing and Artificial Intelligence book series. He is area scientific editor of the Journal of Applied Logic (Logics and Neural Networks), area editor of the Journal of Logic and Computation (Reasoning and Learning, with L. Valiant), associate editor of the International Journal on Artificial Intelligence Tools, and member of the editorial boards of The Logic Journal of the IGPL and The International Journal of Hybrid Intelligent Systems. Garcez is a member of the advisory board of the Cognitive Technologies book series. He is Associate Member of Behavioral and Brain Sciences and a founding co-chair of the International Workshop on Neural-Symbolic Learning and Reasoning (NeSy), held yearly at IJCAI, ECAI or AAAI since 2005.

Garcez has acted as reviewer for a number of international journals on Logic, Cognitive Science, Neural Computation and Artificial Intelligence, including IEEE Transactions on Neural Networks and Learning Systems, Artificial Intelligence, Machine Learning, Cognitive Systems Research, AI Communications, Cognitive Science, Neurocomputing, Information and Computation. He has guest-edited two journal special issues, and co-edited two research monographs. He has served on the Programme Committee or Organizing Committee of a large number of international conferences and workshops, including IJCAI, NIPS, AAAI, ECAI, ICANN, ASE and IJCNN.

Garcez was awarded a two-year Nuffield foundation research grant in the area of neural-symbolic integration (2002-2004). He was Principal Investigator at City University in the EU-funded research project BioGrid (2003-2004) and industry-funded projects RoboCup Physical Visualization League (2007) and Dynamic Fraud Prevention (2009). He was co-investigator in the EU-funded research project Genestream (2003), was awarded a Daiwa Foundation Grant (2006), and has been consistently awarded conference travel grants by The Royal Society (2002, 2003, 2004, 2005, 2007, 2010). Currently, he is Principal Investigator at City University on the EPSRC/Technology Strategy Board project EP/M50712X/1 Advancing Consumer Protection through Machine Learning (with Bet Buddy Ltd.), and the EPSRC/Technology Strategy Board project EP/M507064/1 FareViz: On the Design of Real-Time Data Exploration Tools (with Placr Ltd, Digital MR, and Raileasy).

Selected Publications (complete list available here; google scholar profile here):

  1. M. Franca, G. Zaverucha and A. S. d'Avila Garcez. Fast Relational Learning using Bottom Clause Propositionalization with Artificial Neural Networks, Machine Learning, Springer, In Press.

  2. R. V. Borges, A. S. d'Avila Garcez and L. C. Lamb. Learning and Representing Temporal Knowledge in Recurrent Networks. IEEE Transactions on Neural Networks, 22(12):2409 - 2421, December 2011.

  3. L. de Penning, A. S. d'Avila Garcez, L. C. Lamb and J. J. Meyer. A Neural-Symbolic Cognitive Agent for Online Learning and Reasoning. In Proc. IJCAI'11, Barcelona, Spain, July 2011.

  4. Artur S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Neural-Symbolic Cognitive Reasoning. Cognitive Technologies, Springer, ISBN 978-3-540-73245-7, 2009.

  5. Artur S. d'Avila Garcez, D. M. Gabbay, O. Ray and J. Woods. Abductive Reasoning in Neural-Symbolic Learning Systems. Topoi: An International Review of Philosophy, 26:37-49, March 2007.

  6. Artur S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Connectionist Modal Logic: Representing Modalities in Neural Networks. Theoretical Computer Science, 371(1-2):34-53, February 2007.

  7. Artur S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Connectionist Computations of Intuitionistic Reasoning. Theoretical Computer Science, 358(1):34-55, July 2006.

  8. Artur S. d'Avila Garcez and L. C. Lamb. A Connectionist Computational Model for Epistemic and Temporal Reasoning. Neural Computation, 18(7):1711-1738, July 2006.

  9. Artur S. d'Avila Garcez, K. Broda and D. M. Gabbay. Neural-Symbolic Learning Systems: Foundations and Applications, Perspectives in Neural Computing, Springer, ISBN 1-85233-512-2, 2002.

  10. Artur S. d'Avila Garcez, K. Broda and D. M. Gabbay. Symbolic Knowledge Extraction from Trained Neural Networks: A Sound Approach. Artificial Intelligence, 125(1-2):153-205, January 2001.